跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡明佑
研究生(外文):Ming-Yu Tsai
論文名稱:混合粒子群與引力搜尋演算法於上行正交分頻多重存取系統載波頻率偏移估計之應用研究
論文名稱(外文):Estimation of Carrier Frequency Offsets for Uplink OFDMA Using Hybrid Particle Swarm Optimization and Gravitational Search Algorithm
指導教授:譚旦旭譚旦旭引用關係
口試委員:簡福榮黃永發曾德樟
口試日期:2012-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:62
中文關鍵詞:正交分頻多重存取載波頻率偏移粒子群演算法引力搜尋演算法
外文關鍵詞:Orthogonal Frequency Division Multiple Access (OFDMA)Carrier Frequency Offset (CFO)Particle Swarm Optimization (PSO)Gravitational Search Algorithm (GSA)
相關次數:
  • 被引用被引用:5
  • 點閱點閱:680
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
載波頻率偏移(Carrier Frequency Offset, CFO)會導致正交分頻多工系統(Orthogonal Frequency Division Multiplexing, OFDM)子載波間失去正交性而產生載波間干擾(Inter-Carrier Interference, ICI),因而降低系統效能。另外,上行正交分頻多重存取系統(Orthogonal Frequency Division Multiple Access, OFDMA)中由於基地台同時接收多個用戶之上傳訊號,因而須承受多用戶的載波頻率偏移(CFOs),除造成更嚴重的子載波間干擾(ICI),也引入多用戶干擾(Multiple Access Interference, MAI),因而進一步惡化系統效能,因此近年來CFOs估測技術的研究一直廣受關注。本研究整合粒子群(Particle Swarm Optimization, PSO)與引力搜尋演算法(Gravitational Search Algorithm, GSA)的優點,發展一套演化式演算法(Evolutionary Algorithms),並將之應用在基於空子載波(Null Subcarrier)架構(系統1)及文獻[21,22]架構(系統2)兩種系統中估測CFOs。我們在雷利環境下進行一系列模擬實驗,實驗結果顯示此一演算法的效能優於其他演算法。另外,系統1與系統2的效能互有領先,但系統1可以獲得遠優於系統2的子載波使用效率。

In orthogonal frequency division multiplexing (OFDM) system, carrier frequency offset (CFO) is an important factor that destroys orthogonality among subcarriers. This will lead to inter-carrier interference (ICI) and therefore significantly degrades system performance. Moreover, in the uplink orthogonal frequency division multiple access (OFDMA) system, the base station will receive multiple CFOs from multi-user which causes multiple access interference (MAI), further degrading system performance. Hence the research on CFO estimation has received much attention in recent years. This study develops an evolutionary algorithm by taking the advantages of both the particle swarm optimization (PSO) and gravitational search algorithm (GSA) for CFOs estimation in two different systems, which are null subcarrier-based system (System-1) and [21,22] system (System-2). A series of experiments is conducted over Rayleigh fading channel with various users and the results indicate that performance of the proposed hybrid scheme is superior to other methods. In addition, System-1 and System-2 have comparable performances, but System-1 has much higher subcarrier utilization efficiency.

摘要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究動機與目的 1
1.2研究方法 3
1.3論文架構 3
第二章 正交分頻多工系統 4
2.1 簡介 4
2.2 正交分頻多工原理 4
2.2.1 多載波調變 4
2.2.2 正交分頻多工架構 7
2.2.3 正交分頻多工在頻率選擇性衰減通道之效能 9
2.2.4 保護區間與循環字首 10
2.3 正交分頻多重存取 13
2.4 同步問題 14
2.5 正交分頻多工之優缺點 15
第三章 粒子群演算法及引力搜尋演算法 16
3.1 粒子群演算法 16
3.1.1粒子群演算法簡介 16
3.1.2 粒子群演算法的原理 17
3.1.3 粒子群演算法的發展 17
3.2 粒子群演算法的演算流程 19
3.3 引力搜尋演算法 21
3.3.1引力搜尋演算法簡介 21
3.3.2 引力搜尋演算法的原理 21
3.4 引力搜尋演算法的演算流程 25
第四章 混合PSO及GSA應用於上行OFDMA載波頻率偏移估計 27
4.1 訊號模型 27
4.1.1 空子載波配置 28
4.1.2 接收訊號 29
4.1.3 成本值函數 30
4.2 混合PSOGSA演算法 33
4.2.1 混合型演算法簡介 33
4.2.2 PSOGSA的原理 33
4.2.3 PSOGSA演算流程 35
4.3 模擬結果 37
4.3.1 MSE效能比較 38
4.3.1.1 不同演算法於System-1之MSE效能 38
4.3.1.2 不同系統之MSE效能 39
4.3.2 BER比較 46
4.3.2.1 不同演算法於System-1之BER效能 46
4.3.2.2 不同系統之BER效能 47
4.3.3 子載波使用效率比較 54
第五章 結論 55
參考文獻 57
縮寫中英對照 61

[1] J. Salz and S. B. Weinstein, “Fourier Transform Communication System,” Proceedings of the First ACM Symposium on Problems in the Optimization of Data Communications Systems, pp. 99-128, 1969.
[2] S. B. Weinstein and P. M. Ebert, “Data Transmission by Frequency Division Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on Communication Technology, Vol. 19, Issue. 15, Part1, pp. 628-634, 1971.
[3] S. Hara and R. Prasad, Multicarrier Techniques for 4G Mobile Communications, Artech House Boston London, 2003.
[4] IEEE 802.11, “IEEE Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” Aug. 1999.
[5] H. Sari and G. Karam, “Orthogonal Frequency Division Multiple Access and Its Application to CATV Networks,” Eur. Transactions on Telecommunication, Vol. 9, No. 6, pp. 507-516, 1998.
[6] TR 101 190, Digital Video Broadcasting (DVB);Implementation Guidelines for DVB Terrestrial Services ; Transmission Aspects. European:1997.
[7] I. Koffman and V. Roman, “Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802.16,” IEEE Communication Magazine, Vol. 40, No. 4, pp. 96-103, April 2002.
[8] M. Morelli, C. C. Jay Kuo and M. O. Pun, “Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review,” Proceedings of the IEEE, pp. 1394-1427, 2007.
[9] M. Morelli and U. Mengali, “An Improved Frequency Offset Estimator for OFDM Applications,” IEEE Communication Letter, Vol. 3, pp. 75-77, Mar. 1999.
[10] D. Huang and K. B. Letaief, “Carrier Frequency Offset Estimation for OFDM Systems Using Null Subcarriers,” IEEE Communication Transactions, Vol. 54, pp. 813-822, May 2006.
[11] A. M. Tonello and S. Pupolin, “Performance of Single User Detectors in Multitone Multiple Access Asynchronous Communications,” IEEE Vehicular Technology Conference, pp. 199–203, 2002.
[12] M. O. Pun, M. Morelli and C. C. Jay Kuo, “Maximum-Likelihood Synchronization and Channel Estimation for OFDMA Uplink Transmissions,” IEEE Transaction on Communications, Vol. 54, pp. 726-736, 2006.
[13] Z. Wang, Y. Xin and G. Mathew, “Carrier-Frequency Offset Estimation for OFDMA Uplink with Generalized Subcarrier-Assignment,” IEEE International Conference on Communications, pp. 3490-3494, 2008.
[14] P. Sun and L. Zhang, “Low Complexity Pilot Aided Frequency Synchronization for OFDMA Uplink Transmission,” IEEE Transactions on Wireless Communications, Vol. 8, pp. 3758-3769, 2009.
[15] J. J. Van De Beek, M. Sandell and P. O. Börjesson, “ML Estimation of Time and Frequency Offset in OFDM Systems,” IEEE Transactions on Signal Processing, Vol. 45, pp. 1800-1805, 1997.
[16] M. M. U. Gul, S. Lee and X. Ma, “Null Sub-Carrier Based Carrier Frequency Offset Estimation for OFDMA Uplink Systems,” IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), pp. 36-41, 2011.
[17] R. C. Eberhart and J. Kennedy, “Particle Swarm Optimization,” IEEE International Conference on Neural Networks, pp. 1942-1948, 1995.
[18] Y. Shi and R. Eberhart, “A Modified Particle Swarm Optimizer,” IEEE International Conference on Evolutionary Computation, pp. 69-73, 1998.
[19] E. Rashedi, H. Nezamabadi and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Information Sciences, pp. 2232-2248, 2009.
[20] S. Mirjalili and S. Z. M. Hashim, “A New Hybrid PSOGSA Algorithm for Function Optimization,” 2010 International Conference on Computer and Information Application (ICCIA), pp. 374-377, 2010.
[21] Y. Zeng and A. R. Leyman, “Pilot-Based Simplified ML and Fast Algorithm for Frequency Offset Estimation in OFDMA Uplink,” IEEE Transactions on Vehicular Technology, pp.1723-1732, 2008.
[22] 李勇醇,混合田口運算技術與粒子群演算法之上行正交分頻多重存取系統之載波頻率偏移估計,碩士論文,國立臺北科技大學,台北,2011.
[23] K. S. Tang, K. F. Man, S. Kwong and Q. He, “Genetic Algorithms and Their Applications,” IEEE Signal Processing Magazine, pp. 22-37, 1996.
[24] M. Dorigo, V. Maniezzo, A. Colorni, “Ant System: Optimization by A Colony of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, pp.29-41, 1996.
[25] A. Stacey, M. Jancic, and I. Grundy, “Particle Swarm Optimization with Mutation,” Proceedings of the Congress on Evolutionary Computation, pp. 1425-1430, Camberra, Australia, 2003.
[26] Isaac Newton, In Experimental Philosophy Particular Propositions are Inferred from the Phenomena and Afterwards Rendered General by Induction, 3rd ed.: Andrew Motte''s English translation published, 1729, Vol. 2.
[27] R. Kenyon, General Relativity, Oxford University Press, 1990.
[28] G. H. Golub and C. F. Van Loan, Matrix Computations, 1996: Johns Hopkins Univ. Press.
[29] H. Liu and U. Tureli, “A High-Efficiency Carrier Estimator for OFDM Communications,” IEEE Communications Letters, Vol.2, pp. 104-106, 1998.
[30] X. Lai and M. Zhang, “An Efficient Ensemble of GA and PSO for Real Function Optimization,” in 2nd IEEE International Conference on Computer Science and Information Technology, pp. 651-655, 2009.
[31] A. A. A. Esmin, G. Lambert-Torres and G. B. Alvarenga, “Hybrid Evolutionary Algorithm Based on PSO and GA Mutation,” in proceeding of the Sixth International Conference on Hybrid Intelligent Systems (HIS 06), pp. 57, 2007.
[32] L. Li, B. Xue, B. Niu, L. Tan, and J. Wang, “A Novel PSO-DE-Based Hybrid Algorithm for Global Optimization,” in Lecture Notes in Computer Science.: Springer Berlin / Heidelberg, pp. 785-793, 2008.
[33] N. Holden and A. A. Freitas, “A Hybrid PSO/ACO Algorithm for Discoverin Classification Rules in Data Mining,” Journal of Artificial Evolution and Applications (JAEA), Vol. 2008, 2008.
[34] S. Sinaie, “Solving Shortest Path Problem Using Gravitational Search Algorithm and Neural Networks,” Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia, M.Sc. Thesis 2010.
[35] F. M. Al-Humaidan, P. P. Rahoof and S. M. Sameer, “A Novel PSO Based Carrier Frequency Offset Estimation Technique for Wi-MAX Uplink Transmissions,” 2011 11th International Conference on Hybrid Intelligent Systems (HIS), pp.388-393, 2011

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊