跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐琨瑋
研究生(外文):Kun-Wei Hsu
論文名稱:大型離岸風場考慮線損與尾流效應之佈線最佳化研究
論文名稱(外文):Optimal Layout of TheLarge Offshore Wind Farms Considering Line Loss and Wake Effect
指導教授:陳昭榮陳昭榮引用關係李清吟李清吟引用關係
口試委員:吳進忠陳文輝
口試日期:2012-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電力電子產業研發碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:基因演算法蟻拓演算法尾流效應佈局最佳化佈線最佳化
外文關鍵詞:Genetic AlgorithmAnt Colony SystemWake EffectOptimal LayoutOptimal Connection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:2
離岸式風場的建置在全世界上使用越來越普及,一個典型的離岸式風場可能有數百台的發電機組,它的範圍可從幾平方公里沿伸到幾十平方公里遠。因此在離岸式風場內風力機的建置及纜線配置規劃有著許多可行的方案,而規劃者必須從這些可行的方案中來選擇最佳的一個,通常選擇最大的風力發電量輸出及最低的建置和運轉成本。
本研究探討離岸式風場在固定的風機台數及有限的區域條件下,在風場內採用最佳化排列來使得風力發電機能夠產生最大功率,並在風機建置完畢後,執行風場的線路配置,藉由考慮線損及尾流效應的影響下,獲得最佳的風場建置方式。本文考慮風機與風機間的尾流效應造成之風能損耗,透過基因演算法作風場最佳化排列,讓風能的損耗達到最低;線路配置方面採用輻射型接線方式,並且以不同線徑的纜線去做線路配置,以便與實際情況相符合,然後以蟻拓演算法尋求最佳路徑之特性套用至線路配置內,來得出線路配置成本最佳化。
本研究並以未來澎湖離岸風力發電系統為例,所求出之風機位置及纜線之佈線方式均比傳統方式獲得更大效益。本研究對於未來規劃離岸式風場的建設公司,能輔助在系統規劃時提供更適當的考量目標。


The interest in the utilization of offshore wind power is increasing significantly worldwide. There are hundreds of generators in a typical offshore wind farm, which is outspread in the range of several to tens kilometers. There are many feasible schemes for the turbines layout and internal electric connection system in the offshore wind farm. The planner must find an optimal solution to the problem, which is usually the maximum power output, lowest install and operation cost.
In this study, the configuration of the offshore wind farms with fixed quantity of turbines and the finite area is valid by using the optimal layout of wind turbines(WTs) to produce maximum power. After WTs are constructed and the optimal layout of a radial network is implemented, we apply genetic algorithm to optimize the arrangement of WTs in consideration of minimizing the energy loss caused by the wake effect among the turbines. Moreover, in order to consist with the realistic system, using radial network for the cable connection and considering various diameters of feeders are necessary. Then we apply characteristics of ant colony system about finding the optimal path to obtain the minimal cost of cable connection and turbines layout.
In this paper, we take Penghu offshore wind farms as an example. The obtained result of WTs layout and cable connection is more efficient than the traditional configurations. Besides, this research provides construction company a more appropriate design of planning offshore wind farms in the future .


摘要 i
ABSTRACT ii
致謝 iv
目錄 vi
表目錄 ix
圖目錄 xi
第一章緒論 1
1.1研究背景與動機 1
1.2 文獻回顧 13
1.3 研究目的與方法 18
1.4 論文架構 19
第二章基因演算法考慮尾流之風力機最佳化建置 20
2.1 風能動量理論及尾流效應 20
2.1.1 簡介 20
2.1.2 動量理論 20
2.1.3 地貌、地形對風特性影響 24
2.1.4 尾流效應 25
2.2 基因演算法應用於風機建置 28
2.2.1 簡介 28
2.2.2 編碼、解碼 29
2.2.3 隨機產生 30
2.2.4 適應值 30
2.2.5 複製 31
2.2.6 交配 31
2.2.7 突變 33
2.2.8 最佳化結果 33
第三章蟻拓演算法應用於風場佈線最佳化 34
3.1 簡介 34
3.2 蟻拓演算法 35
3.2.1 變更「狀態轉移規則」 36
3.2.2 變更「整體更新規則」 38
3.2.3加入「區域更新規則」 38
第四章風場建置最佳化模擬結果 41
4.1 模擬系統介紹 41
4.1.1 風機模組 41
4.1.2 纜線模組 43
4.1.3 風速資料 44
4.1.3.1區域性年風速分群 44
4.1.3.2 機率風速分佈應用於風場發電 46
4.2 風場內部佈線最佳化 47
4.2.1 模擬介紹 47
4.2.2 模擬結果介紹 48
4.2.2.1 風場採用人工輻射型佈線 48
4.2.2.2 蟻拓演算法應用於風場輻射型佈線最佳化 55
4.2.3 模擬結論 64
4.3 風場建置最佳化 66
4.3.1 模擬介紹 66
4.3.2 模擬結果介紹 68
4.3.3 模擬結論 71
第五章結論及未來研究方向 72
5.1 結論 72
5.2 未來研究方向 73
參考文獻 74
作者簡介 77


[1]R. Leutz, T. Ackermann, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Technical Offshore Wind Energy Potentials around the Globe,” in Proceedings of the European Wind Energy Conference 2001, Copenhagen, Denmark, WIP-Renewasle Energies, Munich, Germany, July 2001, pp. 789–792.
[2]P. Fuglsang, and K. Thomsen, “Cost Optimization of Wind Turbines for Large scale Off-shore Wind Farms,” Report from Risoe National Laboratory, Roskilde, 1998.
[3]P. Christiansen, K. K. Jorgensen, and A. G. Sorensen, “Grid Connection and Remote Control for the Horns Rev 150 MW Offshore Wind Farm in Denmark,” Tech Wise, DK-7000 Fredericia, 2001.
[4]L. Xu and B. R. Andersen, “Grid Connection of Large Offshore Wind Farms Using HVDC,” John Wiley & Sons, Ltd., 2005.
[5]T. Ackermann, “Wind Power in Power Systems,” John Wiley & Sons, Ltd, 2005.
[6]C. K. Kim, V. K. Sood, G. S. Jang, S. J. Lim and S. J. Lee, “HVDC Transmission: Power Conversion Applications in Power Systems,” John Wiley & Sons (Asia) Pte, Ltd, 2009.
[7]N. B. Negra, O. Holmstrom, B. Bak-Jensen, and P. Sorensen, “Aspects of Relevance in Offshore Wind Farm Reliability Assessment,” IEEE Transactions on Energy Conversion, Vol. 22, no. 1, 2007, pp. 159-166.
[8]J. S. Gonzalez, T. G. Rodriguez, J. C. Mora, M. Burgos Payan, and J. R. Santos, “Overall Design Optimization of Wind Farms,” Renewable Energy, vol. 36, 2011, pp. 1973-1982.
[9]M. Banzo, and A. Ramos, “Stochastic Optimization Model for Electric Power System Planning of Offshore Wind Farms,” IEEE Transactions on Power Systems, Vol. 26, no. 3, 2011, pp. 1338-1348.
[10]J. S. Gonzalez, M. B. Payan, and J. M. Riquelme-Santos, “Optimization of Wind Farm Turbine Layout Including Decision Making Under Risk,” IEEE Systems Journal, Vol. pp, no. 99, 2011, pp. 1.
[11]H. Hunter, C. Gary W, W. Ping-Kui, W. Tien-Chieh, and S. Huai-Che, “A Study of Submarine Power Grid Planning for Offshore Wind Farm,” IEEE Power and Energy Society General Meeting, 2011, pp. 1-5.
[12]M. Dicorato, G. Forte, M. Pisani, and M. Trovato, “Guidelines for Assessment of Investment Cost for Offshore Wind Generation,” Renewable Energy, 36(8), 2011, pp. 2043-2051.
[13]J. C. Moreira, E. Miguez, C. Vilacha, and A. F. Otero, “Large-Scale Network Layout Optimization for Radial Distribution Networks by Parallel Computing,” IEEE Transactions on Power Delivery, Vol. 26, no. 3, 2011, pp. 1946-1951.
[14]W. Chun, and C. Hao Zhong, “Optimization of Network Configuration in Large Distribution Systems Using Plant Growth Simulation Algorithm,” IEEE Transactions on Power Systems, Vol. 23, no. 1, 2008, pp. 119-126.
[15]P. D. Hopewell, F. Castro-Sayas, and D. I. Bailey, “Optimising the Design of Offshore Wind Farm Collection Networks,” Proceedings of the 41st International Universities Power Engineering Conference, Vol. 1, 2006, pp. 84-88.
[16]A. Sannino, H. Breder, and E. K. Nielsen, “Reliability of Collection Grids for Large Offshore Wind Parks,” International Conference on Probabilistic Methods Applied to Power Systems, 2006, pp. 1-6.
[17]G. Quinonez-Varela, G. W. Ault, O. Anaya-Lara, and J. R. McDonald, “Electrical collector system options for large offshore wind farms,” IEEE Transactions on Renewable Power Generation, Vol. 1, no. 2, 2007, pp. 107-144.
[18]G. Shengping, and J. Li, “Study on Optimization of Wind Farm Micro-Layout,” Asia-Pacific Power and Energy Engineering Conference, 2010, pp. 1-4.
[19]J. F. Ainslie, “Calculating the Flow Field in The Wake of Wind Turbines,” Journal of Wind Engineering and Industrial Aerodynamics, 1988, pp. 213-224.
[20]P.Fuglsang, K.Thomsen “Cost Optimization of Wind Turbines for Large-Scale Offshore Wind Farms,” Report from Risoe National Laboratory. Roskilde, 1998.
[21]S. Lundberg, “Configuration Study of Larger Wind Parks,” Thesis for The Degree of Licentiate Engineering,” Chalmers University of Technology Department of Electric Power Engineering, Technical Report, no.474L, 2003, ISSN 1651-4998.
[22]P. Bauer, S. W. H. De Haan, C. R. Meyl, and J. T. G. Pierik, “Evaluation of Electrical System for Offshore Wind Farms,” IEEE Record of the Industry Application Conference, Vol. 3, 2000, pp. 1416-1423.
[23]M. Zhao, Z. Chen, and F. Blaabjerg, “Optimisation of Electrical System for Offshore Wind Farms Via Genetic Algorithm,” IEEE Transactions on Renewable Power Generation, Vol. 3, no. 2, 2009, pp. 205-216.
[24]D. D. Li, C. He, and Y. Fu, “Optimization of Internal Electric Connection System of Large Offshore Wind Farm with Hybrid Genetic and Immune Algorithm,” Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008, pp. 2476-2481.
[25]M. Zhao, Z. Chen, and J. Hjerrild, “Analysis of TheBehaviour of Genetic Algorithm Applied in Optimization of Electrical System Design for Offshore Wind Farms,” IEEE 32nd Annual Conference on Industrial Electronics, 2006, pp. 2335-2340.
[26]L. L. Huang, Y. Fu, and X. M. Guo, “Optimization of Electrical Connection Scheme for Large Offshore Wind Farm with Genetic Algorithm,” International Conference on Sustainable Power Generation and Supply, 2009, pp. 1-4.
[27]D. D. Li, H. Chao, and H. Y. Shu, “Optimization of Electric Distribution System of Large Offshore Wind Farm with Improved Genetic Algorithm,” IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1-6.
[28]B. P. Rašuo, and A. C. Bengin, “Optimization of Wind Farm Layout,” FME Transactions, vol. 38,2010, pp. 107–114.
[29]H. S. Huang, “Distributed Genetic Algorithm for Optimization of Wind Farm Annual Profits,” International Conference on Intelligent Systems Applications to Power System, 2007, pp. 1-6.
[30]G. Mosetti, C. Poloni, and B. Diviacco, “Optimization of Wind Turbine Positioning in Large Windfarms by Means of AGenetic Algorithm,” Jounal of Wind Engineering and Industrial Aerodynamics, Vol. 51, no. 1, 1994, pp.105-116.
[31]S. A. Grady, M. Y. Hussaini, and M. M. Abdullah, “Placement of Wind Turbines Using Genetic Algorithms,” Renewable Energy, 2005, pp. 259-270.
[32]I.Katic, J. Hojstrup and N. Jensen,“A Simple Model for Cluster Efficiency,”European Wind Energy Association Conference and Exhibition, Proceedings EWEC, 1986, pp.407-410.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊