跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊謝宗揚
研究生(外文):Zong-Yang Jhuang Sie
論文名稱:真空硬銲氧化鋁/不鏽鋼接合機械性質與結構特性之研究
論文名稱(外文):Study on mechanical properties and structure characterization of Al2O3/Stainless steel joints by vacuum brazing process
指導教授:蘇程裕蘇程裕引用關係
口試委員:林中魁周長彬
口試日期:2012-01-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:72
中文關鍵詞:真空硬銲製程活性銲料殘留應力介面反應
外文關鍵詞:vacuum brazing processactive filler metalresidual stressinterface reaction
相關次數:
  • 被引用被引用:3
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究觀察三種不同填料合金(BAg-8、CuSil-ABA填料及自製AgCuTi複合填料)對氧化鋁與SUS304硬銲接合特性的影響。實驗中採用氧化鋁陶瓷(≥95% Al2O3)進行實驗,並嘗試利用物理氣相沈積方式製備陶瓷表面金屬化層,再使用BAg-8填料進行硬銲。在活性硬銲方面,採用CuSil-ABA及自製AgCuTi複合填料,直接針對陶瓷進行真空活性硬銲實驗。
硬銲結構分析結果顯示,氧化鋁與304不鏽鋼先用預金屬化法後用BAg-8填料在900℃下硬銲時,從陶瓷一側到不鏽鋼其主要介面的反應層依序為:Al2O3/TiO2/Cu3Ti3O+Ti3Ag/(Ag-Cu) / TiFe2+TiO /SS;活性硬銲所產生的主要介面反應層為:Al2O3/TiO /Cu3Ti3O+Ti3Ag/(Ag-Cu)+Ti/ TiFe2+TiO/ SS。若使用添加鎢顆粒之複合填料後,其生成介面層大致與CuSil-ABA相近,但其介面反應層在XRD下峰值強度較弱且利用SEM觀察後明顯較薄。且經EPMA分析,於填料中W顆粒周圍發現W會與Ti元素與O元素產生析出相,其厚度隨硬銲溫度越高而上升。
硬度實驗結果顯示,預金屬化於850℃與活性硬銲於900℃時,其基材與填料合金硬度變化差異較小,相較於其它硬銲溫度而言,可避免應力集中現象發生。附著力測試結果顯示,最大接合強度乃使用BAg-8填料合金於850℃硬銲時持溫30分鐘,附著力值達到11.11 MPa;使用CuSil-ABA填料合金於900℃硬銲時持溫30分鐘其值亦有13.54 MPa;使用自製AgCuTi/W填料於900℃硬銲時持溫30分也可以達到13.2 MPa。
本文並利用有限元素法對接合件進行殘留應力的分析。計算表面殘留應力的最大值,均分佈在A1203側之填料附近,這與實際硬銲中發現的陶瓷裂紋的位置是一致的。另外對複合銲料的殘留應力模擬結果指出,添加顆粒的填料其熱膨脹係數對殘留應力之影響並不明顯,本文中藉由外加的W顆粒降低活性填料的熱膨脹係數,進而減緩陶瓷/金屬硬銲接合件之殘留應力。模擬結果表明,降低填料/陶瓷兩者間的熱膨脹係數雖然無顯著降低硬銲接合件的殘留應力峰值,但其添加顆粒可以分散應力集中區域。顯示複合銲料亦可解決陶瓷/金屬接合件殘留應力過高的問題。


In this study, we compared three different kinds of filler metal’s effect (BAg-8、CuSil-ABA、AgCuTiW composite filler) on vacuum brazed Al2O3 and SUS304 stainless steel. During experimental procedual, first we used physical vapor deposition (PVD), we fabricated the metallization layer on the ceramic’s surface by sputtering, then brazed by using BAg-8 filler metals. For active filler metals brazing method, we used CuSil-ABA and AgCuTiW composite filler brazed non-metallized ceramic directly.
Experiment results showed that the interfacial reactions were complex, including Al2O3/TiO2/ Cu3Ti3O+Ti3Ag/(Ag-Cu) /TiFe2+TiO/SS between Al2O3 and SS by using pre-metallization methods; by using active brazing methods, its major interfacial reaction layers included Al2O3/TiO /Cu3Ti3O+Ti3Ag/(Ag-Cu)+Ti /TiFe2+TiO/ SS. When using composite filler which added tungsten particles, its XRD patterns were not only similar to CuSil-ABA, but also its XRD peaks were lower. By checked by SEM, its reaction layers were thinner than CuSil-ABA. We also checked by EPMA analysis, it showed the Oxygen and titanium element could seperate phase around the tungsten particles, this phase’s thickness will increase when brazing temperature rise.
And the micro-hardness test results showed that when brazing temperature are 850℃ and 900℃, the hardness difference between based material and filler metalsare smaller than other brazing conditions, and it can avoid stress-concentration efficiently. The pull-off test results were shown that the highest tensile strength was 11.11 MPa when brazed at 850℃ for 30 min by BAg-8 filler metals, for CuSil-ABA filler metals, its highest strength was about 13.54 MPa which brazed at 900℃ for 30 min, by used AgCuTiW composite filler, its highest strength was about 13.2 MPa which brazed at 900℃ for 30 min.
This paper also has residual stress analysis for joining pieces by finite element method. The result has shown that the maximum residual stresses are distributed in the A1203 side near the filler, which is similar to the actual brazing ceramic crack position. In addition to the composite filler, residual stress simulation results indicated the CTE of the composite filler for the residual stress was important. Although there is no obvious decline on residual stress simulation, but added particle can disperse the Stress concentration area. This method might show the composited fillers also sloved the residual stress problem on ceramic/metal brazing.


中文摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章文獻回顧 3
2.1陶瓷與金屬接合進展 3
2.2真空硬銲製程 4
2.3陶瓷與金屬接合強度之影響因素 5
2.4陶瓷金屬化 9
2.5活性金屬銲料 12
2.6複合銲料 14
2.7有限元素法分析殘留應力 14
第三章研究方法與流程 17
3.1實驗流程 17
3.2試片準備及前處理 18
3.3有限元素法模擬 20
3.3.1 ANSYS簡介 20
3.3.2模型建立 21
3.4硬銲填料選用與準備 27
3.5真空硬銲接合 30
3.6相關儀器及原理 32
3.6.1金相與顯微結構觀察 32
3.6.2掃描電子顯微鏡 32
3.6.3電子微探針分析儀 32
3.6.4 X光繞射儀 33
3.6.5維克氏硬度試驗 33
3.6.6冷熱衝擊試驗 33
3.6.7時效試驗 34
3.6.8附著力測試 34
第四章結果與討論 36
4.1有限元素結果分析 36
4.1.1低應力結構設計對殘留應力分析 36
4.1.2複合銲料設計對殘留應力分析 38
4.2結合介面顯微組織分析 38
4.2.1接合件金相組織 38
4.2.2EPMA分析 42
4.2.3X光繞射試驗分析 51
4.3真空硬銲陶瓷/金屬接合反應機構探討 54
4.4維氏硬度試驗分析 56
4.5附著力試驗結果分析 59
4.5.1附著力強度試驗 59
4.5.2破斷面觀察 62
第五章結論 64
第六章未來工作與展望 65
參考文獻 66
作者簡介 72



[1]F. M. Hosking, A. C. Hall, M. Reece, “Visual observation of liquid filler metal flow through a brazed gap”, Science and Technology of Welding and Joining, 2004, pp.95-102.
[2]H. Zhao, D. P. Sekulic, “Brazed fin-tube joint thermal integrity versus joint formation”, International Journal of Heat and Mass Transfer, 2000, pp.1273-1371
[3]D. M.Terriff. “Diffusional solidification phenomena in clad aluminum automotive braze sheet”, Acta Materialia, 2010, pp.1332-1341
[4]F.Gao, H.Zhao. Zellmer B “Prediction of brazed joint topology in heat exchangers”, Welding Journal (Miami, Fla), 2002, pp.102-110
[5]M. C. Chaturvedi, N. Richards, L.Xu Q “Electron beam welding of a Ti-45Al-2Nb-2Mn+0.8 vol.% TiB2 alloy”, Materials Science and Engineering A, 1997 , pp. 605-612
[6]D. P. Sekulic, A. J. Salazar, F. Gao. “Transient behavior of a compact heat transfer surface during brazing”, Journal of Heat Transfer, 2001, pp.1-6
[7]Eric B Ratts, Yi Lu, Murphey, Y. Zhou, “Thermal modeling of controlled atmosphere brazing process using virtual reality technology”, Applied Thermal Engineering, 2000, pp. 1667-1678
[8]J.W. Wu, J.G. Yang, H.Y. Fang, “Characteristic and present situation on research of composite brazing filler metal”, welding & joining, 2002(12)
[9]J.G. Yang, H.Y. Fang, X. Wan, “Al2O3/Al2O3 joint brazed with Al2O3 particle contained composite Ag-Cu-Ti filler material”, Journal of Materials Science and Technology, 2005, pp. 782-784
[10]程大勇,「陶瓷/屬釬焊接頭內殘留應力計算」,中國科學院金屬研究所,1998
[11]邱建輝,中村瑜,「殘留應力對Si3N4卅S45C連接體強度的影響」,無機材料學報,1998
[12]熊柏青,楚建新,「殘留熱應力對Si3N4金屬釬焊接頭性能的影響」,中國有色金屬學報,1998
[13]G. Humpston and D.M. Jacobson, Principles of Soldering and Brazing, ASM International, 1993, pp.150-155.
[14]N. D. Tinsley, J. Huddleston “The Reduction of Residual StressGenerated in Metal-Ceramic Joints” Materials and Manufacturing Process, 1998, pp.491-504
[15]許哲源,316L與多孔性不鏽鋼薄管接合性質之研究,碩士論文,國立臺北科技大學製造科技研究所,台北市,2009,第18-19頁
[16]M. Schwartz, Brazing: For the Engineering Technologist, ASM International, 1995, pp. 172-174.
[17]陳錚,「陶瓷/金屬活性金屬釬焊研究的現狀和進展」,華東船舶工業學院學報, 2001
[18]Hao Hongqi, Wang Yonglan, Jin Zhihaoetc, “Interfacial reaction of alumina with Ag-Cu-Ti alloy”, Journal of materials science, 1995, pp.1233-1239
[19]吳銘方,於治水,「A1203/AgCuTi釬料n%連接的微觀結構及性能」,矽酸鹽學報,2000
[20]段宇,鄒增大,曲仕堯,「復相A1203/SiC陶瓷與不?袗?的釬焊工藝」,焊接, 2002
[21]銘方,於治水,蔣成禹等,「反應層厚度對A1203/AgCuTi/Ti6Al4V接頭強度的影響」,稀有金屬材料與工程,2000
[22]高隴橋,陶瓷/金屬材料實用封接技術,北京:化學工業出版社,2005
[23]劉聯寶,陶瓷/金屬封接技術指南,北京:國防工業出版社,1990
[24]陸善平,吳慶,郭義等,「x射線管中95A1203和Kovar合金的活性釬焊」,焊接,1997
[25]顧鈺熹,特種工程材料焊接,遼寧:遼寧科學技術出版社,1998
[26]D. R. Askeland, The science and engineering of materials cengage , USA 2007
[27]Bartlett, A. T. Evans, M. Ruble, “Residual Stress Cracking of Metal/Ceramic Bonds”, Acta Metal, 1991, pp.1579-1585
[28]J. W. Park, P. F. Mendez, T.W. Eagar, “Strain energy distribution in
ceramic-to-metal joints”, Acta Materialia, 2002, pp.883-899
[29]K. Sugamana, “Recent advances in joining technology of ceramics to metals”,
ISIJ International, 1990, pp.1046-1058
[30]J. Feng, D. Wang, H. Liu, “Finite dement simulation of thermal stress during diffusion bonding of A1203 ceramic to aluminium” , Acta Materialia, 2002, pp.3803-3816
[31]K. M. Prewo, J. J. Brennan, “ Fiber reinforced glasses and glass-ceramics for high performance applications”, Am Ceram Soc, 1986, pp.305-313
[32]N. D. Tinsley, “The reduction of residual stress generated in metal ceramic
joining”, Materials and Manufacturing Processes, 1998, pp.2407-2414
[33]A. Saito, N. Matuda, S. Anami, “Breakdown of Alumina RF Windows”,
IEEE Transactions on Electrical Insulation, 1989, pp.1029-1032
[34]A. J. Moorhead, H. Keating, “Direct brazing of ceramic for advanced heavy duty diesels”, Welding, 1986, pp.17-31
[35]A. Putnis, Introduction to Mineral Sciences, Cambridge,New York 1992, P.134
[36]R. L. Coble, “Sintering crystalline solids.Intermediate and final state diffusion
models”, ApplPhys, 1961, pp.787-792
[37]G. J. Yang, “Composite solder joints brazed A1203 ceramic microstructure and residual stress studies”, Harbin Engineering University, 2003
[38]H.Pulfrich, Ceramic to Metal Seal, U.S.Patent, 2163409, 1939
[39]H.Vatter, Ceramic Seals, German Patent, 645871, 1935
[40]C. ZHENG,H. LOU,Z. FEI, “Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayer”, Journal of materials science letters, 1997 pp.2026-2028
[41]李榮久,陶瓷/金屬複合材料,北京:冶金工業出版社,2004
[42]高隴橋,「當前俄羅斯陶瓷/金屬封接實用技術」,真空電子技術, 2001,pp.20-24
[43]于文學,安正植,峰岸知弘「钎焊陶瓷和金屬的钎料作用機理」,吉林大學自然科學學報.1996,pp. 65-67
[44]W. R. Smith, “Active Solder Joining of Metal/Ceramics and Composites”, Welding joumal, 2001, pp.30-35
[45]H. Hao, Y. Wang, Z. Jin, “ Interfacial reaction of alumina with Ag-Cu-Ti alloy” Journal of materials science, 1995, pp.1233-1239
[46]陸善平,吳慶,郭義,「x射線管中95A1203和Kovar合金的活性钎焊」,焊接,1997
[47]陳登權,「陶瓷/金屬釬焊用釬料及其釬焊工藝進展」,貴金屬,2001
[48]張啟運,莊鴻壽,釬焊手冊,北京:機械工業出版社,1999
[49]Chinese Mechanical Engineering Society Institute of Welding, Welding Handbook(welding material). Mechanical Industry Press,2001
[50]Z. Sheng, A. Wu, R. Lie, “High-temperature ceramics. Metal connection status of research and development”, Chinese Mechanical Engineering, 1999, pp.330-333
[51]C. Rosenbaum, F. Aubertin, “development of a solder paste with ultrafine conditioned powder for the active brazing of ceramics. Materials science and engineering A. 2005, pp.41-49
[52]A. Kar, A. Ray, “Characterization of Al2O3-304 stainless steel braze joint interface”, Materials Letters, 2007, pp.2982-2985.
[53]Y.C. Yoo, J.H. Kima, “Microstructural characterization of Al2O3/AISI 8650 Steel joint brazed with Ag-Cu-Sn-Zr Alloy”, Materials letters, 2000, pp.362-366
[54]A. Kar, S. P. Sagar, A. K. Ray, “Characterization of the ceramic-metal brazed interface using ultrasonic technique”, Materials Letters, 2007, pp. 4169-4172.
[55]Q. Zhang, S. Liu, Y. Zhang, “Interaction of oxide film with molten flux during aluminum brazing”, ActaMetallurgicaSinica, 1989, pp.121-124.
[56]C. Liang, C. Jiang, “Interface structures and strength of Al2O3/Ti-zr-Fe/Nb”, Journal of East China Shipbuilding Institute, 2001, pp.51-54.
[57]K. Bang, S. Liu, “Interfacial reaction between alumina and cu-ti filler metal during reactive metal brazing”, Welding Journal 1994, pp.54-60.
[58]J. J. Stephens, F. M. Hosking, T. J. Headley, P. F. Hlava, “Reaction layers and mechanisms for a Ti-activated braze on sapphire” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, pp.2963-2972.
[59]Surfaces, interfaces, and the science of ceramic joining - proceedings of the 106th annual meeting of the american ceramic society, 2005
[60]C. T. Ho and D. D. L. Chung, “Carbon fiber reinforced tin-lead alloy as a low thermal expansion solder perform”,Material Research, 1990 pp.1266-1270
[61]V. Zhu and D. D. L. Chung, “Active brazing alloy containing carbon fibers for metal-ceramicjoining”, AM.Ceram.Soca, 1994, pp.2712-2720
[62]M. Zhu, D.D.L.Chuang, “Improving the strength of brazed joints to alumina by adding carbon fibers”, Journal ofmaterials science,1997, pp.5321-5333
[63]吳京洧,楊建國,方洪淵,「複合釬料的特點及研究現狀」,焊接,2002, pp.10-14
[64]C. T. Ho, “Carbon Fiber-Reinforced Tin-Lead Alloy Composites”, Material Research, 1994, pp.2144-2147
[65]J. Cao, D. D. L. Chuang, “Carbon Fiber Silver-Copper Brazing Filler Composites for Brazing Ceramic“, Welding Journal, 1992, pp.21-24
[66]M. Zhu, D. D. L. Chuang, “Carbon Fiber Silver-Copper Laminate as a Composite Brazing Material for Metal-Ceramic Joining“, Extended Abstract and Program. Biennial Conference on Carbon, 1991, pp.298-299
[67]P. U. Sonje, K. N. Subramanian, and A. Lee, “Characterization of Polymeric Composites With Low CTE Ceramic Particulate Fillers“, Journal of Advanced Materials, 2004, pp.22-29
[68]A. Cullison, “Dissimilar Materials Joined by Brazing“, Welding Journal, 1999, pp.49-50
[69]譚天亞,傅正義,張東明,「擴散焊接異種金屬及陶瓷/金屬的研究進展」,矽酸鹽學報,2003
[70]S. Tang, J. Deng, W. Liu, “Mechanical and ablation properties of 2D-carbon/carbon composites pre-infiltrated with a SiC filler “, carbon, 2006, pp.2877-2882
[71]張小勇,呂宏,王林山,「SiC陶瓷與金屬Ta連接的殘餘應力」,中國稀土學報,2003,pp.98-101
[72]張九海,何鵬,「擴散連接接頭行為數值模擬的發展現狀」,焊接,2000,pp.85-91
[73]張小勇,呂宏,「SiC陶瓷與金屬Ta連接的殘餘應力」,中國稀土學報,2003,pp.98-101
[74]Y. Nemoto, K. Ueda, M. Satou, “Analysis and measurement of residual stress distribmion of vanadium/ceramics joinls for fusion reactor applications“, Journal of Nuclear Materials, 1998, pp.1517-1522
[75]A.E. Martinelli, A. L. Drew Robin, E. A. Fancello, “Neutron diffraction andfinite-element analysis of thermal residual messes“, Journal of the American CeramicSociety,1999, pp.1787-1792
[76]J. W. Park, P. F. Mendez, T. W. Eagar, “Strain energy distribution inceramic-to-metal joints“, Acta Materialia, 2002, pp.883-899
[77]康淵、陳信安,ANSYS入門,台北:全華圖書,2002
[78]高隴橋,「陶瓷-金属封接结构和经验计算」,2005(4)
[79]王穎,何鵬,馮吉才,「接头形式对陶瓷/金属连接残余应力的影响」, 2007(4)
[80]H. Mavoori, S. Jin, “New creep-resistant low melting point solders with ultrafine oxide dispersions“, Journal of Electronic Materials, l 998, pp.1210-12l6
[81]D. C. Lin, G. X. Wang, T. S. Srivatsan, “The influence of copper nanopowders on microstructure and hardness of iead-tin solder“, Materials Leaers, 2002, pp.333-338
[82]D.C.Lin, C. Y. Kuo, G. X. Wang, T. S. Srivatsan, “Synthesis and characterization of nano-composite lead-free solder“, Journal of Metastable and Nanocrystalline Materials, 2005, pp.145-148
[83]劉顯光、許明發,複合材料,台北:全威圖書,2001,
[84]A. Kar, A.K.Ray, ”Characterization of interface of Al2O3-304 stainless steel braze joint”, Material Characterization, 2007, pp.555-562.
[85]A. Kar, S. Mandal, S. Rathod, Proc 3rd International brazing and soldering conference, April 23-26, 2006, pp.219-225.
[86]S. Mandal, A.K.Ray, Material science and engineering A, 2004, pp.235-244.
[87]B. R. Zhao, G. B. Li, P. Gao, T. Q. Lai, S. C. Song, X. J. Gao, NuclInstrum Methods Phys Res, 2005, pp.1-6.
[88]C. Valette, M. F. Devismen, R. Voytovych, N. Eustathopoulos, Acta material.2005, pp.1-6.
[89]M. Brochu, M. D. Pugh, R. A. Drew, Material science and engineering A. 2004, pp.34-42.
[90]C. Zhang, G. Qiao, Z. Jin, J Eur Ceram Soc, 2002, pp.2181-2186.
[91]R. Voytovych, F. Robaut, N. Eustathopoulos, Acta material.2005, pp.2205-2214.
[92]T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary Alloy Phase Diagrams, 2nd ed., William W. Scott, New York,1990.
[93]M. Kaji, M.E. Stevenson, R.C. Bradt, Journal of American Ceramic Society, 2002, pp.415-422.
[94]M. E. Kassner, R. S. Rosen, G. A. Henshall, “Discussion of void nucleation’, Metallurgical transactions A. 24(8), 1993, pp.1877-1878.
[95]M. E. Stevenson, M. Kaji, R.C. Bradt, “Microhardness anisotropy and the indentation size effect on the basal plane of single crystal hematite”, Journal of European Ceramic Society. 22(7), 2002, pp.1137-1148.
[96]P. Yang, B.N. Turman, S.J. Glass, “Braze microstructure evolution and mechanical properties of electron beam joined ceramics”, Materials Chemistryand physics, 2000, pp.137-146.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top