跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃碇洋
研究生(外文):Ding-Yang Huang
論文名稱:以應變規應用於呼吸位移補償系統之補償精度改善及實驗驗證
論文名稱(外文):The improvement and verification of position accuracy of the respiratory compensation system by the strain measurement
指導教授:莊賀喬莊賀喬引用關係
口試委員:田德之廖愛禾李春穎
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:82
中文關鍵詞:即時追蹤呼吸運動補償應變規GafChromic EBT軟片
外文關鍵詞:Real-time trackingRespiratory compensationStrain gauge transducerGafChromic EBT film
相關次數:
  • 被引用被引用:2
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在驅動床台做與目標反向的運動,使其能抵銷因呼吸而造成的器官位移。並藉由更換呼吸訊號擷取裝置,以應變規取代壓力傳感器,藉此提升呼吸訊號與腹部起伏之間的線性關係,而將呼吸模擬系統位置誤差縮小到0.45mm~1.42mm,呼吸補償系統位置誤差縮小到0.48mm~1.42mm,與壓力感測器做為擷取方法的呼吸補償系統比較,誤差改善率最高可改善67.7%。同時以三種驗證方式驗證呼吸補償系統抵銷目標位移的效果,首先以呼吸模擬系統模擬器官位移與人體呼吸,並以呼吸補償系統進行補償,藉由螢光透視影像分析呼吸補償系統的補償效果,其結果顯示,系統補償率最高可達85.72%;其次以直線加速器照射300cGy的劑量於輻射變色軟片,分析軟片劑量分布情形,結果顯示,若輸入訊號為正弦波信號,補償後目標區域內的平均劑量百分比較未補償前提高1.4%~24.4%,95%等劑量面積較未補償前改善15.3%~76.9%,若輸入訊號為人體呼吸訊號,補償後目標區域內的平均劑量百分比較未補償提高31.8%~67.7%,95%等劑量面積較未補償前改善15.3%~86.4%,而經補償後的Gamma通過率皆可提升至100%;最後由實際病患擷取呼吸訊號,同時以螢光透視觀察病患體內橫膈膜,並以呼吸補償系統抵銷橫膈膜位移,結果顯示可抵銷約67.3%~75.6%的位移。綜合以上驗證結果可顯示出本研究在抵銷因呼吸而造成的器官位移上能有所貢獻。

This study drove the treatment couch for reverse motion, opposite from the direction of the targets, in order to offset organ displacement generated by respiratory motion. A strain gauge was used to replace a pressure transducer as a respiratory signal capture device to obtain abdomen respiratory signals. The simulated respiratory system (SRS) position error is approximately 0.45~1.42mm, while the respiratory compensating system (RCS) position error is approximately 0.48~1.42mm. Compare with the pressure transducer RCS, the position error can be improved by an amount of 67.7%. This study verified the effect of RCS in offsetting the target displacement by three methods. The first method was using the SRS to simulate organ displacements, human respiratory and being compensated by RCS. Then the target movement was analyzed by fluoroscopy images and the results suggested that compensated rate can be improved to 85.72%. The Second method was using LINAC to irradiate 300cGy dose on the EBT film. The results show that when the input respiratory signals of SRS are sine wave signals, the average dose in the target area and the 95% isodose area after compensation is improved by 1.4~24.4% and 15.3~76.9%, respectively. If human respiratory signals are input to the SRS, the average dose in the target area and the 95% isodose area after compensation is improved by 31.8~67.7% and 15.3~86.4%, respectively. Gamma passing rate after compensation can be improved to 100% only when the displacement of the respiratory motion is within 10~30mm. The third method was capturing patients’ respiratory signals, while using the fluoroscopy to observe their diaphragm and activating RCS to offset the displacements of targets. The experimental results suggested that, a displacement of 67.3~75.6% can be offset. The results proved that the proposed RCS can contribute the compensation of organ displacement caused by respiratory motion.

摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3研究步驟與方法 4
1.4論文架構 5
第二章 文獻回顧 7
2.1器官位移現象 7
2.2呼吸訊號擷取方法 8
2.2.1位移或體積變化的監測 8
2.2.2氣體感測 10
2.2.3氣體濃度感測 10
2.2.4電磁場感測 11
2.2.5應變規 11
2.3現階段癌症治療方法 14
2.3.1加大治療範圍 14
2.3.2呼吸控制(Breath holds) 15
2.3.3呼吸調控(Gating) 17
2.3.4即時追蹤(Real-time tracking) 18
2.4輻射變色軟片Gafchromic EBT 性質 19
第三章 實驗材料與方法 22
3.1實驗架構 22
3.2實驗設備 23
3.2.1呼吸模擬系統 23
3.2.2呼吸補償系統 25
3.2.2.1 應變規 26
3.2.3 移動式螢光透視系統(Mobile fluoroscopy system) 29
3.2.3.1 螢光透視原理(Fluoroscopy) 29
3.2.4 輻射變色軟片(Gafchromic EBT film) 31
3.2.5 穿透式平版掃描器(Epson Expression 1680) 32
3.3使用軟體 34
3.3.1 圖像運動控制軟體(Vissim) 34
3.3.2 影像分析軟體(CMA Coach 6) 36
3.3.3 劑量分析軟體(Doselab 4) 37
3.3.4 圖像編輯工具(Image J) 38
3.4實驗方法 38
3.4.1呼吸模擬系統與呼吸補償系統模擬驗證 38
3.4.2呼吸模擬系統與呼吸補償系統劑量驗證 40
3.4.3呼吸補償系統人體驗證 41
第四章 結果與討論 43
4.1呼吸模擬系統及呼吸補償系統模擬驗證 43
4.1.1螢光透視影像分析 48
4.1.1.1光學尺與螢光透視的關係 48
4.1.1.2系統補償率 49
4.2呼吸模擬系統及呼吸補償系統劑量驗證 50
4.2.1劑量轉換曲線建立 50
4.2.2劑量分佈剖面分析 52
4.2.3照野區域內劑量分布分析 57
4.2.4等劑量面積分析 60
4.2.5照野區域內Gamma分析 68
4.3呼吸補償系統人體驗證 69
4.3.1 螢光透視影像分析 70
第五章 結論與未來研究方向 73
5.1結論 73
5.2未來研究方向 74
參考文獻 75

[1] 行政院衛生署 http://www.doh.gov.tw/CHT2006/index_populace.aspx
[2] R. Tarver, D. Conces, and J. Godwin, “Motion artifacts on CT simulate bronchiectasis,” American Journal of Roentgenology, vol. 151, no. 6, Dec. 1988, pp. 1117 -1119.
[3] C. J. Ritchie, J. Hsieh, M. F. Gard, J. D. Godwin, Y. Kim, and C. R. Crawford, “Predictive respiratory gating: a new method to reduce motion artifacts on CT scans.,” Radiology, vol. 190, no. 3, Mar. 1994, pp. 847 -852.
[4] J. W. Wong, M. B. Sharpe, D. A. Jaffray, V. R. Kini, J. M. Robertson, J. S. Stromberg, and A. A. Martinez, “The use of active breathing control (ABC) to reduce margin for breathing motion,” International Journal of Radiation Oncology*Biology*Physics, vol. 44, no. 4, Jul. 1999, pp. 911–919.
[5] P. Cheung, K. Sixel, R. Tirona, and Y. Ung, “Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC),” International Journal of Radiation Oncology*Biology*Physics, vol. 57, no. 5, Dec. 2003, pp. 1437-1442.
[6] B. Gagel et al., “Active breathing control (ABC): determination and reduction of breathing-induced organ motion in the chest.,” International Journal of Radiation Oncology*Biology*Physics, vol. 67, no. 3, 2007, pp. 742-749.
[7] J. H. Lewis and S. B. Jiang, “A theoretical model for respiratory motion artifacts in free-breathing CT scans,” Physics in Medicine and Biology, vol. 54, no. 3, Feb. 2009, pp. 745-755.
[8] J. Weese, G. P. Penney, P. Desmedt, T. M. Buzug, D. L. . Hill, and D. J. Hawkes, “Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans for image-guided surgery,” IEEE Transactions on Information Technology in Biomedicine, vol. 1, no. 4, Dec. 1997, pp. 284-293.
[9] Giraud et al., “Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing.,” International Journal of Radiation Oncology*Biology*Physics, vol. 51, no. 4, 2001, pp. 1081-1092.
[10] H. H. Chen, J. Wu, K. S. Chuang, and H. C. Kuo, “Correction of respiratory motion for IMRT using aperture adaptive technique and visual guidance: A feasibility study,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 577, no. 3, 2007, pp. 734–740.
[11] S. S. C. Burnett, K. E. Sixel, P. C. F. Cheung, and J. D. P. Hoisak, “A study of tumor motion management in the conformal radiotherapy of lung cancer.,” Radiotherapy & Oncology, vol. 86, no. 1, 2008, pp. 77-85.
[12] B. W. Loo and P. D, “Motion Management in 4 - D Radiation Therapy for Lung Cancer Highly conformal radiotherapy Highly conformal radiotherapy IGRT for motion management IGRT for motion management Treatment planning PET - CT IGRT for motion management,” International Journal, 2008, pp. 1-9.
[13] Z. Zhao et al., “A lung area estimation method for analysis of ventilation inhomogeneity based on electrical impedance tomography,” Journal of X-Ray Science and Technology, vol. 18, no. 2, 2010, pp. 171–182.
[14] F. Sui et al., “Auto-tracking system for human lumbar motion analysis,” Journal of X-ray science and technology, vol. 19, no. 2, 2011, pp. 205-18.
[15] P. J. Keall et al., “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,” Medical Physics, vol. 33, no. 10, 2006, pp. 3874.
[16] C. Huntzinger et al., “Dynamic targeting image-guided radiotherapy,” Medical Dosimetry, vol. 31, no. 2, 2006, pp. 113–125.
[17] J. Wang, M. Valle, M. Goryawala, J. M. Franquiz, and A. J. Mcgoron, “Computer-assisted quantification of lung tumors in respiratory gated PET/CT images: phantom study,” Medical & Biological Engineering & Computing, vol. 48, no. 1, Nov. 2009, pp. 49-58.
[18] E. D. Yorke, L. Wang, K. E. Rosenzweig, D. Mah, J.-B. Paoli, and C.-S. Chui, “Evaluation of deep inspiration breath-hold lung treatment plans with Monte Carlo dose calculation,” International Journal of Radiation Oncology*Biology*Physics, vol. 53, no. 4, Jul. 2002, pp. 1058-1070.
[19] K. Suga, Y. Kawakami, H. Iwanaga, O. Tokuda, and N. Matsunaga, “Automated breath-hold perfusion SPECT/CT fusion images of the lungs,” American Journal of Roentgenology, vol. 189, no. 2, 2007, pp. 455–463.
[20] T. Kimura et al., “Interbreath-hold reproducibility of lung tumour position and reduction of the internal target volume using a voluntary breath-hold method with spirometer during stereotactic radiotherapy for lung tumours,” British Journal of Radiology, vol. 80, no. 953, May 2007, pp. 355-361.
[21] T. Kawano, E. Ohtake, and T. Inoue, “Deep-Inspiration Breath-Hold PET/CT of Lung Cancer: Maximum Standardized Uptake Value Analysis of 108 Patients,” Journal of Nuclear Medicine, vol. 49, no. 8, Jul. 2008, pp. 1223-1231.
[22] C. Huntzinger et al., “Dynamic targeting image-guided radiotherapy,” Medical Dosimetry, vol. 31, no. 2, 2006, pp. 113–125.
[23] J. Wang, M. Valle, M. Goryawala, J. M. Franquiz, and A. J. Mcgoron, “Computer-assisted quantification of lung tumors in respiratory gated PET/CT images: phantom study,” Medical & Biological Engineering & Computing, vol. 48, no. 1, Nov. 2009, pp. 49-58.
[24] P. Keall, V. Kini, S. Vedam, and R. Mohan, “Motion adaptive x-ray therapy: a feasibility study,” Physics in medicine and biology, vol. 46, 2001, pp. 1.
[25] H. Shirato et al., “Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor,” International Journal of Radiation Oncology*Biology*Physics, vol. 48, no. 2, 2000, pp. 435–442.
[26] M. F. Spadea, G. Baroni, D. P. Gierga, J. C. Turcotte, G. T. Y. Chen, and G. C. Sharp, “Evaluation and commissioning of a surface based system for respiratory sensing in 4D CT,” Journal of Applied Clinical Medical Physics, vol. 12, no. 1, 2010, pp. 3288.
[27] E. D. Brandner, D. Heron, A. Wu, M. S. Huq, N. J. Yue, and H. Chen, “Localizing moving targets and organs using motion-managed CTs,” Medical Dosimetry, vol. 31, no. 2, 2006, pp. 134–140.
[28] H. Shirato, M. Oita, K. Fujita, Y. Watanabe, and K. Miyasaka, “Feasibility of synchronization of real-time tumor-tracking radiotherapy and intensity-modulated radiotherapy from viewpoint of excessive dose from fluoroscopy1,” International Journal of Radiation Oncology*Biology*Physics, vol. 60, no. 1, Sep. 2004, pp. 335-341.
[29] G. C. Sharp, S. B. Jiang, S. Shimizu, and H. Shirato, “Prediction of respiratory tumour motion for real-time image-guided radiotherapy,” Physics in medicine and biology, vol. 49, 2004, pp. 425.
[30] 許淑惠,呼吸同步放射治療系統的評估,碩士論文,國立清華大學原子科學系,新竹, 2001。
[31] E. Melian, G. S. Mageras, Z. Fuks, S. A. Leibel, A. Niehaus, L. Helen, M. Zelefsky, B. Baldwin, and G. J. Kutcher, “Variation in prostate position quantitation and implications for three-dimensional conformal treatment planning,” International Journal of Radiation Oncology*Biology*Physics, vol. 38, no. 1, Apr. 1997, pp. 73–81.
[32] S. C. Davies, A. L. Hill, R. B. Holmes, M. Halliwell, and P. C. Jackson, “Ultrasound Quantitation of Respiratory Organ Motion in the Upper Abdomen,” British Journal of Radiology, vol. 67, no. 803, Jan. 1994, pp. 1096–1102.
[33] K. Kitamura, H. Shirato, Y. Seppenwoolde, T. Shimizu, Y. Kodama, H. Endo, R. Onimaru, M. Oda, K. Fujita, S. Shimizu, and K. Miyasaka, “Tumor location, cirrhosis, and surgical history contribute to tumor movement in the liver, as measured during stereotactic irradiation using a real-time tumor-tracking radiotherapy system,” International Journal of Radiation Oncology*Biology*Physics, vol. 56, no. 1, May 2003, pp. 221–228.
[34] Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimizu, M. van Herk, J. V. Lebesque, and K. Miyasaka, “Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy,” International Journal of Radiation Oncology*Biology*Physics, vol. 53, no. 4, Jul. 2002, pp. 822–834.
[35] L. Ekberg, O. Holmberg, L. Wittgren, G. Bjelkengren, and T. Landberg, “What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer?,” Radiotherapy and Oncology, vol. 48, no. 1, Jul. 1998, pp. 71–77.
[36] S. C. Erridge, Y. Seppenwoolde, S. H. Muller, M. van Herk, K. De Jaeger, J. S. . Belderbos, L. J. Boersma, and J. V. Lebesque, “Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer,” Radiotherapy and Oncology, vol. 66, no. 1, Jan. 2003, pp. 75–85.
[37] I. S. Grills, D. Yan, A. A. Martinez, F. A. Vicini, J. W. Wong, and L. L. Kestin, “Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: A comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation,” International Journal of Radiation Oncology*Biology*Physics, vol. 57, no. 3, Nov. 2003, pp. 875–890.
[38] J. Hanley, M. M. Debois, D. Mah, G. S. Mageras, A. Raben, K. Rosenzweig, B. Mychalczak, L. H. Schwartz, P. J. Gloeggler, W. Lutz, C. C. Ling, S. A. Leibel, Z. Fuks, and G. J. Kutcher, “Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation,” International Journal of Radiation Oncology * Biology * Physics, vol. 45, no. 3, Oct. 1999, pp. 603–611.
[39] C. Plathow, S. Ley, C. Fink, M. Puderbach, W. Hosch, A. Schmähl, J. Debus, and H.-U. Kauczor, “Analysis of intrathoracic tumor mobility during whole breathing cycle by dynamic MRI,” International Journal of Radiation Oncology*Biology*Physics, vol. 59, no. 4, Jul. 2004, pp. 952–959.
[40] K. E. Sixel, M. Ruschin, R. Tirona, and P. C. . Cheung, “Digital fluoroscopy to quantify lung tumor motion: potential for patient-specific planning target volumes,” International Journal of Radiation Oncology*Biology*Physics, vol. 57, no. 3, Nov. 2003, pp. 717–723.
[41] G. S. Mageras and E. Yorke, “Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment,” Seminars in Radiation Oncology, vol. 14, no. 1, Jan. 2004, pp. 65–75.
[42] J. Sage and W. Gough, “A simple inexpensive device for monitoring patient respiration,” Medical & Biological Engineering & Computing, vol. 36, no. 2, Mar. 1998, pp. 231–232.
[43] [43] C. Larsson and P. Staun, “Evaluation of a new fibre-optical monitor for respiratory rate monitoring,” Journal of Clinical Monitoring and Computing, vol. 15, no. 5, Jul. 1999, pp. 295–298.
[44] C. Chang and G. H. Glover, “Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI,” NeuroImage, vol. 47, no. 4, Oct. 2009, pp. 1381–1393.
[45] University of North Carolina School of Medicine http://www.med.unc.edu/radonc/patient/treatments/calypso
[46] A. Sawant, R. L. Smith, R. B. Venkat, L. Santanam, B. Cho, P. Poulsen, H. Cattell, L. J. Newell, P. Parikh, and P. J. Keall, “Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking,” International Journal of Radiation Oncology*Biology*Physics, vol. 74, no. 2, 2009, pp. 575–582.
[47] I. Eriksson, L. Berggren, and S. Hallgren, “CO2 production and breathing pattern during invasive and non‐invasive respiratory monitoring,” Acta naesthesiologica Scandinavica, vol. 30, no. 6, Aug. 1986, pp. 438–443.
[48] International Commission on Radiation Units and Measurements, ICRU Report 62: Prescribing, Recording, and Reporting Photon Beam Therapy (Supplement to ICRU Report 50) (ICRU, Bethesda, 1999)
[49] K. E. Rosenzweig, J. Hanley, D. Mah, G. Mageras, M. Hunt, S. Toner, C. Burman, C. C. Ling, B. Mychalczak, Z. Fuks, and S. A. Leibel, “The deep inspiration breath-hold technique in the treatment of inoperable non–small-cell lung cancer,” International Journal of Radiation Oncology*Biology*Physics, vol. 48, no. 1, Aug. 2000, pp. 81–87.
[50] D. Sarrut, V. Boldea, S. Miguet, and C. Ginestet, “between inhale and exhale breath-hold CT scans,” Medical Physics, vol. 33, no. 3, 2006, pp. 605.
[51] E. A. Barnes, B. R. Murray, D. M. Robinson, L. J. Underwood, J. Hanson, and W. H. Y. Roa, “Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration,” International Journal of Radiation Oncology*Biology*Physics, vol. 50, no. 4, Jul. 2001, pp. 1091–1098.
[52] M. J. Murphy, D. Martin, R. Whyte, J. Hai, C. Ozhasoglu, and Q.-T. Le, “The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery,” International Journal of Radiation Oncology*Biology*Physics, vol. 53, no. 2, Jun. 2002, pp. 475–482.
[53] D. Sarrut, V. Boldea, M. Ayadi, J.-N. Badel, C. Ginestet, S. Clippe, and C. Carrie, “Nonrigid registration method to assess reproducibility of breath-holding with ABC in lung cancer,” International Journal of Radiation Oncology*Biology*Physics, vol. 61, no. 2, Feb. 2005, pp. 594–607.
[54] V. R. Kini, S. S. Vedam, P. J. Keall, S. Patil, C. Chen, and R. Mohan, “Patient training in respiratory-gated radiotherapy,” Medical Dosimetry, vol. 28, no. 1, 2003, pp. 7–11.
[55] R. Wagman, E. Yorke, E. Ford, P. Giraud, G. Mageras, B. Minsky, and K. Rosenzweig, “Respiratory gating for liver tumors: use in dose escalation,” International Journal of Radiation Oncology*Biology*Physics, vol. 55, no. 3, Mar. 2003, pp. 659–668.
[56] J. Wilbert, J. Meyer, K. Baier, M. Guckenberger, C. Herrmann, R. Heß, C. Janka, L. Ma, T. Mersebach, A. Richter, M. Roth, K. Schilling, and M. Flentje, “Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): System description and prototype testing,” Medical Physics, vol. 35, no. 9, 2008, pp. 3911.
[57] 孫崇騰,「比較聚合底片和傳統感光驗證片於立體定位放射手術之劑量分布」,放射治療與腫瘤學,第三卷,第二期,1996,第121-127頁。
[58] ISP Markets and Products. http://online1.ispcorp.com/en-us/pages/home.aspx
[59] N. V. Klassen, L. van der Zwan, and J. Cygler, “GafChromic MD-55: investigated as a precision dosimeter,” Medical Physics, vol. 24, no. 12, Dec. 1997, pp. 1924–1934.
[60] M. Butson, T. Cheung, and P. K. N. Yu, “Scanning orientation effects on Gafchromic EBT film dosimetry,” Australasian Physical & Engineering Science in Medicine, vol. 29, no. 3, 2006, pp. 281–284.
[61] O. A. Zeidan, S. A. L. Stephenson, S. L. Meeks, T. H. Wagner, T. R. Willoughby, P. A. Kupelian, and K. M. Langen, “Characterization and use of EBT radiochromic film for IMRT dose verification,” Medical Physics, vol. 33, no. 11, Nov. 2006, pp. 4064–4072.
[62] T. Cheung, M. J. Butson, and P. K. N. Yu, “Measurement of high energy x-ray beam penumbra with Gafchromic EBT radiochromic film,” Medical Physics, vol. 33, no. 8, Aug. 2006, pp. 2912–2914.
[63] A. Sankar, K. M. Ayyangar, R. M. Nehru, P. G. G. Kurup, V. Murali, C. A. Enke, and J. Velmurugan, “Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification,” Medical Dosimetry, vol. 31, no. 4, 2006, pp. 273–282.
[64] 大銀微系統 http://www.hiwinmikro.com.tw/..
[65] KYOWA http://www.kyowa-ei.co.jp/
[66] 黃啟軒,椎間核壓力感測器之製程研究,碩士論文,臺灣大學醫學工程學研究所, 台北,2011。
[67] 黃裕盛,王皇評,林士偉,詹凱振,負荷元之設計與製作,專題論文,逢甲 大學自動控制工程學系,台中,2003。
[68] 王柏仁,二維奈米碳管應變感測器,碩士論文,臺灣大學機械工程學研究所, 台北,2006。
[69] 李世中,數位式胸腔X光照相之劑量-影像品質最佳化評估,博士論文,清華大學工程與系統科學系,新竹,2007。
[70] 傅仰傑,結合動態X光及電腦骨骼解剖模型量測人體膝關節之三維運動,碩士論文,台灣大學醫學工程學研究所,台北,2003。
[71] VisSim. http://www.vissim.com/.
[72] DoseLab. http://doselab.sourceforge.net/.
[73] ImageJ. http://rsbweb.nih.gov/ij/.
[74] 李必忍,即時位置管理呼吸同步追蹤調控系統應用於放射治療提高準確度,碩士論文,中山醫學大學醫學研究所,台中,2001。
[75] 邱君洋,呼吸位移補償系統之設計與驗證,碩士論文,臺北科技大學機電整合研究所,台北,2011。
[76] Dwyer. http://www.dwyer-inst.com/.
[77] D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the quantitative evaluation of dose distributions,” Medical Physics, vol. 25, 1998, pp. 656.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊