跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳首豪
研究生(外文):Shou-Hao CHen
論文名稱:人工髖關節表面置換術股骨頸骨折預防之研究
論文名稱(外文):Evaluation for the causes of a femoral neck fracture in hip resurfacing arthroplasty –A finite element study
指導教授:黎文龍黎文龍引用關係
指導教授(外文):Wenlung Li
口試委員:劉建緯曾百由
口試日期:2012-01-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:63
中文關鍵詞:表面置換型人工髖關節股骨頸骨折有限元素分析
外文關鍵詞:hip resurfacing arthroplastyfemoral neck fracturesfinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於現今工業技術發達使人工髖關節有了重大的突破,目前發展出表面置換型人工髖關節,不同於過去全人工髖關節所消耗不必要人體骨本,其手術範圍小復原性快已經成為現今醫療趨勢,如今有許多國外的研究以及臨床案例進行研究,應用在表面置換術人工髖關節已是成熟的技術。
雖然表面置換型人工髖關節擁有符合未來醫學發展趨勢,而且也可以讓病患從全人工髖關節置換術有另外新的選擇,但是表面置換型人工髖關節的臨床案例依然有失敗的可能性,從文獻中在植入物無菌鬆脫和股骨頸骨折之失敗案例原因,得知植入角在表面置換型人工髖關節中扮演重要的角色。
從過去文獻研究得知,植入角外翻對整體表面置換行人工髖關節系統為有利方向,但是目前相關對於植入角的研究只限於二維平面的考量,因此本研究擬進一步考慮股骨的前傾角對於全人工髖關節表面置換影響,更配合植入角外翻角度得到最佳的植入角方位進行有限元素分析科學驗證,提供未來臨床醫師手術之參考。
從本研究結果得知手術外翻方向進行植入,並不會立即對於股骨頸斷裂產生威脅,但是各項模擬組合在植入物的根部位置有應力集中現象,這可能造成股骨產生應力遮蔽效應而使置換手術失敗,不同骨質的改變,則會影響到最大應力發生位置,若皮質骨與鬆質骨差異過大,會使得股骨頸部應力值上升則可能產生斷裂的風險,這證明因骨壞死使得楊氏系數下降是有可能造成股骨頸骨折原因,最後適當的前傾角與股骨頸部剖面有關,選擇植入的前傾角之前必須對股骨頸部剖面做評估,另外外翻角度超過15度更可能讓手術失敗,本研究建議植入角在外翻角度適合5度和10度之間。


With advancements in industrial technologies, resurfacing artificial hip has developed, unlike total hip in the past consumed by unnecessary human bone, the extent of surgery has become a small recovery faster by the medical trend, significant research effort has been devoted to total hip resurfacing arthroplasty and clinical trials have been performed in many countries. Thus, the technology is already mature.

The increased use of total hip resurfacing arthroplasty is consistent with current trends in medical science. It provides patients with an alternative to total hip arthroplasty. However, clinical trials suggest there are still some issues with total hip resurfacing arthroplasty. Our study analyzes the factors that causes cause failures in the implants, resulting in aseptic loosening and femoral neck fractures. Total hip resurfacing arthroplasty technology is very important for biomechanics, and the implant angle is especially significant.

Previous research studies suggest that the implant valgus angle is significant for the overall effectiveness of the total surface replacement artificial hip joint system. Previous studies on implant angles are limited to the 2-D plane, resulting in discrepancies compared to actual surgical conditions. This study also considers the importance of the anteversion angle of the femoral bone in total surface-replacement hip resurfacing arthroplasty. Based on the implant valgus angle, the best implant angle is obtained. Finite element analysis is performed on the location data for scientific verification. This analysis will serve as a reference for clinical surgeons during surgeries.

The results of this study suggest that the valgus of an implant does not lead to increased risk of femoral neck fractures. Simulations showed the effect of stress concentration at the bottom of the implant. This may reduce the femoral stress shielding effect, causing failure of the hip replacement. Changes in the nature of different bone will affect the position of maximum stress. When cortical bone and cancellous bone is too large difference, would make the increase in femoral neck stress to fracture risk. This proves that it is possible to cause osteonecrosis will be decline young''s modulus of femoral neck fracture. The anteversion angle is associated with femoral neck section. Choose implant anteversion angle must be to know femoral neck section. In addition, if the valgus angle is greater than 15 degrees, the joint may fail during operation. Thus, we suggest that the suitable valgus angle for the implant is between 5 and 10 degrees.


中文摘要 ...............................i
英文摘要 ...............................iii
誌謝 ...............................v
目錄 ...............................vi
表目錄 ...............................viii
圖目錄 ...............................ix
第一章 前言............................1
1.1 髖關節構造.....................1
1.1.1 髖關節構造...............1
1.1.2 髖關節的活動特性.........3
1.2 髖關節疾病.....................5
1.3 人工髖關關節置換手術簡介.......7
1.4 研究背景及文獻探討.............11
1.5 研究目的與動機.................19
第二章 研究方法與步驟..................20
2.1 研究流程.......................20
2.2 植入角定義.....................22
2.3 有限元素分析...................24
2.3.1 模型建立.................25
2.3.2 模型網格化...............27
2.3.3 模型材料性質.............28
2.3.4 邊界條件.................29
2.4 破壞理論.......................30
2.5 模型簡化.......................31
2.6 驗證模型............................33
2.6.1人造股骨簡介..............33
2.6.2實驗設備介紹..............34
2.6.3實驗流程與架構............36
第三章 研究結果與討論..................37
3.1體外測試及有限元素接觸模擬結果比較...37
3.2股骨整體模擬結果................38
3.3股骨頸部皮質骨模擬結果..........44
3.4 植入物模擬結果.................49
3.4 不同骨質模擬結果...............57
第四章 結論與未來建議..................59
參考文獻................................60


[1] 袁本治,黃經,解剖生理學,台北:五南圖書出版公司,2009。
[2] 楊書菱,許怡婷,認識關節:關節的功能與構造,台北:合記圖書出版公司,2007。
[3] J. P. Paul, “Forces transmitted by joints in the human body, ” Proc Instn
Mech Engrs, vol. 8, 1967.
[4] T. P. Andriacchi, G. B. Andersson, R.W. Fermier, “A study of lower-limb mechanics during stair-climbing,” J Bone Joint Surg Am., vol. 62, 1980, pp.749-757.
[5] Y. S. Lai, H. W. Wei, C. K. Cheng, “An alysis of hip replacement data of Taiwan, ” Annual Meeting of the Orthopaedic Research Society, vol.114, 2004.
[6] Y. S. Lai, H. W. Wei, C. K. Cheng, “Incidence of hip replacement among national health insurance enrollees in Taiwan,” Journal of Orthopaedic Surgery and Research vol. 3, 2008.
[7] T. P. Vail, M. A. Mont, M. S. McGrath, M. G. Zywiel, P. E. Beaulé, W. N. Capello, “Hip Resurfacing: Patient and Treatment Options,” J Bone Joint Surg Am., vol. 91, 2009, pp.2-4.
[8] D. McMinn, J. Daniel, “History and modern concepts in surface replacement,”, Proc. IMechE vol. 220-H , 2006.
[9] J. M. Simpson, R. N. Villar, “Focus On HIip resurfacing Arthroplasty,” British Editorial Society of Bone and Joint Surgery, 2010.
[10] T. P. Schmalzried, “Why Total Hip Resurfacing,” The Journal of Arthroplasty vol. 22, 2007.
[11] J. M. Simpson, R. N. Villar, “Resurfacing registers concern, ” J Bone Joint Surg, vol.92-B, 2010.
[12] R. B. C. Treacy, C. W. McBryde, E. Shears, P. B. Pynsent, “Birmingham hip resurfacing, ” J Bone Joint Surg, vol. 93-B, 2011.
[13] D. J. Langton, S. S. Jameson, T. J. Joyce, N. J. Hallab, S. Natu, A. V. F. Nargol, “Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement, ” J Bone Joint Surg, vol. 92-B , 2009.
[14] J. Daniel, P. B. Pynsent, D. J. W. McMinn, “Metal-on-metal resurfacing of the hip in patients under the age of 55 years with osteoarthritis, ” British Editorial Society of Bone and Joint Surgery, vol.86-B, 2004.
[15] D. Adams, S. Quigley, “Hip resurfacing: Past, present and future, ” Journal of Orthopaedic Nursing , 2005, pp. 87–94 .
[16] R. S. Bell, J. Schatzker, “A study of implant failure in the Wagner resurfacing Arthroplasty, ” J Bone Joint Surg Am. vol.67, 1985, pp.1165-1175.
[17] P. E. Beaule´, L. Duff, P. Campbell, F. J. Dorey, S. H. Park, H. C. Amstutz,
“Metal-on-Metal Surface Arthroplasty With a Cemented Femoral Component - A 7–10 Year Follow-Up Study, ” The Journal of Arthroplasty, vol. 19, 2004.
[18] H. C. Amstutz, P. E. Beaulé, F. J. Dorey, M. J. Le Duff, “Metal-on-Metal Hybrid Surface Arthroplasty: Two to Six-Year Follow-up Study, ” J. Bone Joint Surg Am. vol.86, 2004, pp.28-39.
[19] R. B. C. Treacy, C. W. McBryde, P. B. Pynsent, “Birmingham hip resurfacing Arthroplasty:A Minimum follow-up of five years, ” The Journal of bone and joint surgey, vol.87-B, 2005.
[20] T. Nishii, N. Sugano, H. Miki, M. Takao, T. Koyama, H. Yoshikawa, “Five-Year Results of Metal-on-Metal Resurfacing Arthroplasty in Asian Patients, ” The Journal of Arthroplasty, vol. 22, 2007.
[21] D.L. Back, R. Dalziel, D. Young, “Early results of primary Birmingham hip resurfacings: An independent prospective study of the first 230 hips., ” J Bone Joint Surg Br, vol. 87, 2005. pp. 324.
[22] A. D. Carrothers, R. E. Gilbert, A. Jaiswal, J. B. Richardson, “Birmingham hip resurfacing: The prevalence of failure, ” J. Bone Joint Surg, vol. 92-B, 2010.
[23] A. Matthies, R. Underwood, P. Cann, K. Ilo, Z. Nawaz, J. Skinner, A. J. I IIart, “Retrieval analysis of 240 metal-on-metal hip components, comparing modular total hip replacement with hip resurfacing, ” J. Bone Joint Surg, vol. 93-B, 2011.
[24] R. T. Steffen, P. R. Foguet, S. J. Krikler, R. Gundle, D. J. Beard, D. W. Murray, “Femoral Neck Fractures After Hip Resurfacing, ” The Journal of Arthroplasty,
vol. 24, 2009.
[25] J. P. Long, D. L. Bartel, “Surgical Variables Affect the Mechanics of a Hip Resurfacing System, ” Clinical Orthopaedics and Related Research, 2006.
[26] M. E. Taylor, K. E. Tanner, M. A. R. Freeman, A. L. Yettram, “Stress and strain distribution within the intact femur: compression or bending? , ” Med. Eng. Phys. vol. 18, 1996, pp. 122-131.
[27] I. A. J. Radcliffe, M. Taylor, “Investigation into the effect of varus–valgus orientation on load transfer in the resurfaced femoral head: A multi-femur finite element analysis,” Clinical Biomechanics, vol. 22, 2007, pp. 780-786.
[28] A. Gefen, “Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws,” Med. Biol. Eng. Comput., vol. 40, 2002, pp. 311–322.
[29] J. Charnley, Acrylic cement of orthopaedic surgery, London: E.&S. Livingstone, 1970
[30] 白海蓬,「聚甲基丙烯酸甲酯骨水泥對心血管系統影響及其預防的文獻分析」,Chinese Journal of Pharmacovigilance,第四卷,第二期,2007,第100-103頁。
[31] H. C. Amstutz, P. A. Campbell and M. J. LeDuff, “Fracture of the Neck of the Femur After Surface Arthroplasty of the Hip,” J. Bone Joint Surg Am., vol. 86, 2004, pp. 1874-1877.
[32] 方強如,人工關節用骨水泥調製機轉之影響研究,碩士論文,國立臺北科技大學製造科技研究所,台北,2010。
[33] P. E. Beaule´, N. Harvey, E. Zaragoza, M. J. Le Duff, F. J. Dorey , “The femoral head/neck offset and hip resurfacing, ” J. Bone Joint Surg, vol. 89-B, 2007.
[34] T. Ziylan, K. A. Murshid, “An Analysis of Anatolian Human Femur
Anthropometry, ” Turk J. Med. Sci., vol. 32, 2002, pp. 231-235.
[35] K. Dunlap, AR. Shands, “A new method for determination of torsion of the femur, ” J. Bone Joint Surg, vol. 35-A, 1953, pp.289-311.
[36] SB. Murphy, SR. Simon, PK. Kijewski, “Femoral anteversion, ” J. Bone Joint Surg, vol. 69, 1987, pp.1169-1176.
[37] JL. Bardet, RL. Ruby, RB. Hohn, “Measurement of femoral torsion in dogs using a biplanar method, ” Vet Surg, 1983.
[38] P.A. Keblish, “Surgical techniques in the performance of unicompartmental arthroplasties, ”Operative Tech. Orthop. vol. 8, 1998, pp. 134-145.
[39] 劉建緯,單髁人工膝關節脛骨植入物之生物力學研究-有限元素分析,博士論文,國立臺北科技大學機電科技研究所,台北,2008。
[40] M.E. Taylor, K.E. Tanner, A.L. Yettram, “Stress and strain distribution with the intact femur: compression or bendind?, ” Medical Engineering, vol. 18, 1996, pp. 122-131.
[41] C. J. Wang, A. L. Yettram, M. S. Yao, and P. Procter, “Finite Element Analysis of A Gamma Nail within A Fractured Femur, ” Medical Engineering, vol. 20, 1998, pp. 677-683.
[42] MatWeb (http://www.matweb.com)。
[43] P. M. Mayhew, C. D. Thomas, J. G. Clement, N. Loveridge, T. J. Back, W. Bonfield, C. Burgoyne, J. Reeve, “Relation between age, femoral neck cortical stability, and hip fracture risk, ” Lancet, vol.366, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top