跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施樂晏
研究生(外文):Le Yen Shi
論文名稱:染料敏化太陽能電池之膠態電解質開發
論文名稱(外文):Development of Gelled-type Electrolyte for Dye-sensitized Solar Cell
指導教授:張合
口試委員:卓清松郭金國簡淑華
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:膠態電解質聚乙烯吡咯烷酮聚乙二醇乙腈染料敏化太陽能電池
外文關鍵詞:gel polymer electrolytepolyvinyl pyrrolidone (PVP)acetonitrile (ACN)polyethylene glycol (PEG)DSSC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是討論由不同成分組成之染料敏化太陽能電池(DSSC)其膠態高分子其特性的比較,使用不同的電解質組成搭配不同高分子材料及溶劑找出最佳配方。實驗使用LiI或KI為碘化物搭配I2,並添加聚乙二醇 (PEG) 或聚乙烯吡咯烷酮 (PVP)高分子添加物,再以乙腈(ACN) 或碳酸丙烯酯(PC) 兩種溶劑製備成膠態電解液,分析由不同組成方式合成的電解質特性,並對不同高分子的添加比例做比較。本實驗光陽極為在ITO導電玻璃上塗覆一層TiO2薄膜厚度為15~30μm,而對電極為在FTO玻璃上濺鍍一層Pt厚度為20μm,對其進行光電轉換效率(conversion efficiency)測試,實驗結果以0.5M LiI+0.05M I2 搭配ACN並加入20wt.%PEG組成方式為最佳,以此電解質組成方式,在100Mw/cm2 光源照射下DSSC的填充因子為0.50,短路電流密度為 12.11mA/cm2,開路電壓為680mV而光電轉換效率為4.13%。使用膠態電解質組成之DSSC和使用液態電解液相比能有較穩定的光電轉換效率,在第7日光電轉換效率仍有2.6%,在第14日光電轉換效率有0.35%。

The study mainly compares the features of high-molecular gel-type dye-sensitized solar cell (DSSC) composed of different components. Different electrolytes are used to synthesize with different high-molecular materials and solvents, intending to find out the best prescription. The experiments of the study use LiI and KI, together with I2, to serve as electrolytes, which are added with high-molecular additives, polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP), as well as two solvents, acetonitrile (ACN) and propylene carbonate (PC), to prepare gel-type electrolytes. The study analyzes the features of the electrolytes synthesized by different assembly ways, and compares the addition proportions of different high molecules. In the experiments, photoelectrode is made by coating a layer of TiO2 thin film at thickness of 15~30um on ITO conducting glass; and counter electrode is made by sputtering a layer of Pt at thickness of 20um on FTO conducting glass. They both receive conversion efficiency test. The experimental results show that the composition of 0.5M of LiI + 0.05M of I2 and ACN, as well as addition of 20 wt.% of PEG, can achieve the best performance. Under illumination of light source 100mWcm-2, the DSSC with electrolyte composed in this way has fill factor 0.5, short-circuit density 12.11mAcm-2, open-circuit voltage 680mV, and conversion efficiency 4.13%. Comparing with the DSSC using liquid-state electrolyte, the DSSC composed of gel-type electrolyte has more stable conversion efficiency. The seventh day, its conversion efficiency is 2.4%, and the fourteenth day, its conversion efficiency is 0.35%.

摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池簡介 1
1.3 研究動機與目的 4
第二章 理論基礎與文獻回顧 6
2.1 染料敏化太陽能電池簡介 6
2.1.1 染料敏化太陽能電池的構造 6
2.1.2 染料敏化太陽能電池工作原理 6
2.1.3 光陽極 8
2.1.3.1 光觸媒 8
2.1.3.2 TiO2 9
2.1.4 染料 12
2.1.4.1 有機金屬染料 13
2.1.4.2 有機染料 14
2.1.5 反電極 15
2.1.6 導電玻璃 15
2.1.7 電解質 16
2.1.7.1 液態電解質 16
2.1.7.2 膠態電解質 18
2.1.8 離子液體 19
2.2 太陽能電池評價性能參數 20
2.2.1 開路電壓Voc與短路電流Jsc 20
2.2.2 填充因子FF 20
2.2.3 光電轉換效率 21
2.2.4 入射單色光子-電子轉換效率 21
2.3 膠態電解質文獻回顧 21
第三章 實驗方法與步驟 24
3.1 實驗材料與設備 24
3.2 實驗流程概述 26
3.3 前置準備 27
3.3.1 透明導電基板清潔 27
3.3.2 光電極薄膜製備 29
3.3.3 反電極薄膜製備 31
3.3.4 N719染料調配 31
3.3.5 膠態電解質製備 31
3.3.6 光陽極染料浸泡 33
3.3.7 太陽能電池組裝 33
3.4 儀器設備 33
3.4.1 掃描式電子顯微鏡 (SEM) 33
3.4.2 穿透式電子顯微鏡(TEM) 34
3.4.3 X光繞射儀(XRD) 34
3.4.4 紫外光-可見光吸收光譜儀(UV-Visible) 35
3.4.5 光電轉換效率(I-V) 36
3.4.6 入射單色光子-電子轉換效率(IPCE) 36
3.4.7 開路電壓衰退量測(OCVD) 37
3.4.8 導電度 38
3.4.9 傅立葉紅外線光譜(FTIR) 38
第四章 結果與討論 39
4.1 TiO2光陽極 39
4.1.1 XRD分析 39
4.1.2 TEM分析 40
4.1.3 FESEM分析 40
4.1.4 EDS分析 42
4.2 染料 43
4.2.1 染料光譜分析 43
4.2.2 染料FTIR分析 44
4.3 膠態電解質光電轉換效率分析 44
4.3.1 高分子材料重量百分濃度對光電轉換效率影響 44
4.3.2 高分子材料對光電轉換效率影響 48
4.3.3 碘化物對光電轉換效率影響 50
4.3.4 溶劑對光電效率影響 51
4.3.5 不同漿料影響 53
4.4 持久性 54
4.5 穩定性 55
4.5.1 I-T 曲線分析 55
4.5.2 V-T曲線分析 57
4.5.3 暗電流(Dark current) 58
4.5.4 持續照光影響 60
4.6 導電度 63
第五章 結論 65
參考文獻 66


[1] Energy Information Administration, International Energy Outlook 2007, Washington: U.S. Department of Energy, 2007, pp. 29-58.
[2] D. E. Carlson, C. R. Wronski, "Amorphous silicon solar cell," Appl. Phys. Lett. vol. 28, 1975, pp. 671-973.
[3] 楊采穎,二氧化鈦奈米棒的製備與應用:從光催化反映到染料敏化太陽能電池效率之相關性探討,碩士學位,台北科技大學,台北,2008。
[4] B. O’Regan, M. Gratzel, "A new-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, no. 6346, 1991, pp. 737-740.
[5] A. Hagfeldt, M. Gratzel, "Light-induced redox reactions in nanocrystalline systems," Chem. Rev, vol. 95, no. 1, 1995, pp. 49-68.
[6] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, "Solar cell efficiency tables," Prog. Photovolt : Res. Appl. 17, no.1, 2009, pp. 85-94.
[7] S Nakade, S Kambe, T Kitamura et al. "Effects of lithium lon density on electron transport in nanoporous TiO2 electrodes," J. Phts. Chem. B., vol. 105, no. 38, 2001, pp. 9150-9152.
[8] B.O. Reagan, D. Schwartz, "Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL’NCSS/ CuSCN: initiation and potential mechanisms," Chem. Mater, vol. 10, no. 6, 1998, pp. 1501–1509.
[9] K. Murakoshi, R. Kogue, Y. Wada, S. Yanagida, "Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer," Chem. Lett, vol.26, no. 5, 1997, pp. 471–474.
[10] U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Wiessortel, J. Salbeck, H. Spreitzer, M. Gratzel, "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, vol. 395, no. 6702, 1998, pp. 583–585.
[11] S. Spiekermann, G. Smestad, J. Kowalik, M. Gratzel, "Poly (4–undecyl–2, 2''–bithiophene ) as a hole conductor in solid state dye-sensitized titanium dioxide solar cells," Synth. Met, vol. 121, no. 1-3, 2001, pp. 1603-1604.
[12] H. Usui, H. Mataui, N. Tanabe, "Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes," Journal of Photochemistry and Photobiology A., vol. 164, no.1-3, 2004, pp. 97-101.
[13] Jiangbin Xia, Fuyou Li, Chunhui Huang, Jin Zhai, Lei Jiang, " Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes," Solar Energy Materials and Solar Cells, vol. 90, 2006, pp. 944-952.
[14] A. Giraudeau, Fu–Ren F. Fan, A. J. Bard, "Semiconductor electrodes. 30. Spectral sensitization of the semiconductors titanium oxide (n-TiO2) and tungsten oxide (n-WO3) with metal phthalocyanines," J. Am. Chem. Soc., vol.102, no. 16, 1980, pp. 5137-5142
[15] D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles and I. Riess, "Nature of photovoltaic action in dye-sensitized solar cells," Journal of Physical Chemistry B., vol. 104, no. 9, 2000, pp. 2053-2059.
[16] 傅思萍,染料敏化太陽能電池劣質化分析研究,碩士學位,台北科技大學,台北,2007。
[17] A. Hagfeldt and M. Gratzel, "Light Induced Redox Reactions in Nanocrystalline Systems," Coord. Chem. Rev, vol. 95, no.1, 1995, pp. 49-68.
[18] K. Kalyanasundaram and M. Gratzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices," Coord. Chem. Rev, vol. 177, no. 1, 1998, pp. 347-414.
[19] M. Gratzel, "Mesoporous oxide junctions and nanostructured solar cells," Current Opinion in Colloid and Interface Science, vol. 4, no. 4, 1999, pp. 314-321.
[20] Cahen et al. "Nature of Photovoltaic Action in Dye-Sensitized Solar Cells," Journal of Physical Chemistry B., vol. 104, no. 9, 2000, pp. 2053-2059.
[21] A. Fujishima et al., "Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films," Sol. Energy Mater. Sol. Cells, vol. 81, no. 2, 2004, pp. 197-203.
[22] D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, I. Riess, "Nature of Photovoltaic Action in Dye-Sensitized Solar Cells," J. Phys. Chem B., vol. 104, no. 9, 2000, pp. 2053-2059.
[23] R. W. Fessenden, P. V. Kamat, "Rate Constants for Charge Injection from Excited Sensitizer into SnO2, ZnO, and TiO2 Semiconductor Nanocrystallites," J. Phys. Chem., vol. 99, no. 34, 1995, pp. 12902-12906.
[24] P. D. Cozzoli, R.Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, D. Laub, "Photocatalytic Synthesis of Ag Nanoparticles Stabilized by TiO2 Nanorods: a Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution" J. Am. Chem. Soc, vol. 126, no. 12, 2004, pp. 3868-3879.
[25] E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, "Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers," J. Am. Chem. Soc, vol. 125, no. 2 , 2003, pp. 475-482.
[26] M. Gratzel, "Photoelectrochemical cells," Nature, vol. 414, no. 6861, 2001, pp. 338-344.
[27] J. K. Burdett, T, Hughbands, J. M. Gordon, J. W. R. Jr. and J. V. Smith, "Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K," Journal of the American Chemical Society, vol. 109, no. 12, 1987, pp. 3639-3646.
[28] S. Lu, R. Koeppe, S. Gunes and N. S. Sariciftci, "Quasi-solid-state dye-sensitized solar cells with cyanoacrylate as electrolyte matrix, " Solar Energy Materials and Solar Cells, vol. 91, no. 12, 2007, pp. 1081-1086.
[29] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga and A. Shimizu, "Growth of p-type zinc oxide films by chemical vapor deposition," Jpn. J. Appl. Phys., vol. 36, no. 11 , 1997, pp. 1453-1455.
[30] M. Gomez, J. Rodriguez, S. Tingry, A. Hagfeldt, S. -E Lindquist and C. G. Granqvist, "Photoelectrochemical effect in dye sensitized, sputter deposited Ti oxide films: The role of thickness-dependent roughness and porosity," Solar Energy Materials and Solar Cells, vol. 59, no. 3, 1999, pp. 277-287.
[31] L. Miaoa, P. Jinb, K. Kanekoc, "Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering," Applied Surface Science, vol. 212-213, no. SPEC., 2003, pp. 255-263.
[32] M. Okuya, K. Nakade and S. Kaneko, "Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 70, no. 4, 2002, pp. 425-435.
[33] M. Gratzel, "Testing of dye sensitized TiO2 solar cells Ⅱ: Theoretical voltage output and photoluminescence efficiencies," Solar Energy Materials and Solar cells, vol. 32, no. 3, 1994, pp. 273-288.
[34] 劉茂煌,「奈米光電電池」,工業材料,第兩百零三期,2003,第91-97頁。
[35] M. Gratzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, no. 2, 2003, pp. 145-153.
[36] Z. S. Wang, T. Yamaguchi, H. Sugihara and H. Arakawa, "Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films," Langmuir, vol. 21, no. 10, 2005, pp. 4272-4276.
[37] Z. S. Wang, H. Kawauchi, T. Kashima and H. Arakawa, "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordination Chemistry Reviews, vol. 248, no. 13-14, 2004, pp. 1381-1389.
[38] K. Schwarzburg and F. J. Willig, "Origin of Photovoltage and photocurrent in the Nanoporous Dye-Sensitized Electrochemical SolarCell," J.Phys. Chem, B, vol. 103, no. 28, 1999, pp. 5743-5746.
[39] 張芳碩,染料敏化二氧化鈦光電化學太陽能電池研究,碩士論文,民國92年7月
[40] M. K. Nazeeruddin, A. Kay, I. Rodicio et all, " Conversion of light to electricity by cis-X2bis (2,2'' - bipyridyl - 4,4'' - dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," J. Am Chem. Soc., vol. 115, no. 14, 1993, pp. 6382-6390.
[41] 化學技術,鋰電池技術與現況,姚慶意,第七卷第二期,P143,1999
[42] S. Sugden, H. Wilkins, "CLXVII.-The parachor and chemical constitution. Part XII. Fused metals and salts," J. Chem. Soc., no. 98, 1929, pp. 1291-1298.
[43] F. H. Hurley, T. P. Wier, "Electrodeposition of Metals from Fused Quaternary Ammonium Salts," J. Electrochem. Soc., vol. 98, no. 5, 1951, pp. 203-206.
[44] H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryoung, "Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt," J. Am. Chem. Soc., vol. 97, no. 11, 1975, pp. 3264-3265.
[45] T. Stergiopoulos, L. M. Arabatzis, G. Katsaros et al. "Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells," Nano. Lett, vol. 2, no. 11, 2002, pp. 1259-1261.
[46] Y. J. Ren, Z. C. Zhang, S. B. Fang, M. Z. Yang, S. M. Cai, "Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells," Solar Energy Materials and Solar Cells, vol. 71, no. 2, 2002, pp. 253-259.
[47] G. P. Kalaignan, M. S. Kang and Y. S. Kang, "Effects of compositions on properties of PEO-KI-I2 salts polymer electrolytes for DSSC," Solid State Ionics, 2006, vol. 177, no. 11-12, pp. 1091.
[48] Jihuai Wu, Pinjiang Li, Sancun Hao, Hongxun Yang, Zhan Lan, "A polyblend electrolyte (PVP/PEG+KI+I2) for dye-sensitized nanocrystalline TiO2 solar cells," Electrochimica Acta, vol. 52, no. 17, 2007, pp. 5334-5338.
[49] Li PJ, Wu JH, Huang ML, Hao SC, Lan Z, Li Q, et al. "The application of P(MMA - co - MAA) / PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature," Electrochim Acta, vol. 53, no. 2, 2007, pp. 903-908.
[50] Hongxun Yang, Miaoliang Huang, Jihuai Wu, Zhang Lan, Sancun Hao, Jianming Lin, "The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells," Materials Chemistry and Physics, vol. 110, no. 1, 2008, pp. 38-42.
[51] D. Saikia1, C.C. Han, Y.W. Chen-Yang, "Influence of Polymer Concentration and Dyes on Photovoltaic Performance of Dye Sensitized Solar cell with P(VdF-HFP) Based Gel Polymer Electrolyte," Journal of Power Sources, vol. 185, no. 1, 2008, pp. 570-576.
[52] J. Gong, K. Sumathy, J. Liang, "Polymer electrolyte based on polyethylene glycol for quasi-solid state dye sensitized solar cells," Renewable Energy, vol. 39, no. 1, 2012, pp. 419-423.
[53] R. Moran, "Formulate for determination of chlorophylls pigments extracted with N,N-Dimethylformamide," Plant Physiology, vol. 69, no. 6, 1982, pp. 1376-1381.
[54] A. Zaban, M. Greenshtein and J. Bisquert, "Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements," Chem. Phys. Chem., vol. 4, no. 8, 2003, pp. 859-864.
[55] J. Bisquert, V. Vyacheslav and S. Vikhrenko, "Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells," Journal of Physical Chemistry B., vol. 108, no. 7, 2004, pp. 2313-2322.
[56] 林昱呈,電泳披覆法製備錳鋅鐵氧磁體鍍膜之研究,碩士學位,國立成功大學材料科學及工程學系,台南,2002。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top