跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀柏葦
研究生(外文):Po-Wei Chi 紀柏葦
論文名稱:鎳鐵 / 氧化鋅複合薄膜之結構、磁、光、介電性質研究
論文名稱(外文):Study of structural, magnetic, optical and dielectric properties of NiFe / Zinc Oxide multilayer thin films
指導教授:魏大華
口試委員:姚永德余岳仲張晃暐
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:104
中文關鍵詞:氧化鋅鎳鐵c軸(0002)優選取向光致螢光光譜儀介電常數
外文關鍵詞:Zinc OxidePermalloyc-axis (0002) preferred orientationphotoluminescencedielectric constantmultilayer
相關次數:
  • 被引用被引用:7
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用濺鍍法(Sputtering),以氬電漿轟擊氧化鋅和鎳鐵靶材,在Si(100),SiO2(100),PET與玻璃基板上製備氧化鋅/ 鎳鐵/ 氧化鋅複合薄膜結構。在本研究中,製備氧化鋅/ 鎳鐵/ 氧化鋅複合薄膜結構,整個過程分為三大部分,其中改變其鎳鐵中間層厚度分析其薄膜微結構、表面形貌、磁性質、光學性質極介電性質。本論文第一部分探討鎳鐵、氧化鋅個別薄膜性質利用操控射頻(RF)功率(75W~200 W)與製程壓力(1×10-2Pa),並探討在不同製程參數下對於形成(0002)織構的氧化鋅薄膜之影響。由實驗結果顯示:於製程壓力1×10-2Pa、RF功率125W、所沉積之氧化鋅薄膜有較佳之c軸(0002)織構能力,並具有優異的紫外光發光效率。另外隨RF功率增加時,從光致螢光光譜儀(Photoluminescence Spectrophotometer, PL)分析得知有明顯的紅移(Red shift)。第二部分製備氧化鋅/ 鎳鐵/ 氧化鋅複合薄膜結構,隨著中間層鎳鐵薄膜厚度增加,其氧化鋅薄膜內部缺陷增加,造成更明顯的紅移現象,此複合薄膜材料的介電常數大小與中間層鎳鐵層的厚度關係,在頻率 40Hz到30MHz之間被精密量測。在本研究中,研究資料顯示多層薄膜(氧化鋅/ 鎳鐵/ 氧化鋅)的介電常數大小受奈米尺度鎳鐵層的厚度影響而達到一極值,我們發現奈米級厚度(10~40nm)的鎳鐵層使得氧化鋅/ 鎳鐵/ 氧化鋅的複合薄膜之介電常數達到50。

During the past decade , Zinc Oxide is one of the promising materials because of advantages over other wide bandgap semiconductors such as GaN and SiC.. This paper attempts to investigate the structure, magnetism, optical and dielectric properties of ZnO thin films. The ZnO films were deposited onto Si and glass substrates at room temperature by radio-frequency magnetron sputtering without introducing any oxygen source under different sputtering powers ranging from 75 to 175W (75, 100, 125, 150, 175W) with low Ar working pressure of 1×10-2 Pa. From the x-ray diffraction patterns indicated that the (0002) peak intensity increased with increasing the sputtering power, accompanying the getting higher satellite peak intensity of ZnO(0004). ZnO film exhibits a remarkable near-band-edge emission peak located at around 375 nm with a bandgap of 3.24 eV confirmed by room temperature photoluminescence spectra. It is observe that the value of dielectric constant for ZnO thin film is 11. Subsequently, by constructing ZnO / NiFe / ZnO sandwich structure films, we discussed optical and magnetic properties of NiFe layers, the crystallization of thin films, and its dielectric properties. Also, we compared these NiFe sandwich films with ZnO thin films . By increasing the thicknesses of NiFe layer, we discussed its influence on dielectric properties. It was discovered that by increasing the thickness of NiFe layer, the interface polarization was induced by the thicknesses of NiFe more than 5 nm, and the dielectric constant increased to. Besides, by applying magnetic field to the samples, it was discovered that the changes of the dielectric constant were less than 0.1%.

中文摘要....................................................................................................i
英文摘要....................................................................................................ii
誌謝 ...........................................................................................................iii
目錄 ...........................................................................................................v
表目錄.......................................................................................................vii
圖目錄.......................................................................................................viii
第一章緒論..............................................................................................1
1.1 前言...........................................................................................1
1.2 磁性材料與半導體材料結合....................................................2
1.3 研究目的與動機.......................................................................3
第二章文獻回顧......................................................................................4
2.1真空理論....................................................................................4
2.2電漿............................................................................................4
2.3薄膜成長理論............................................................................6
2.4氧化鋅薄膜結構特性.................................................................11
2.5製備氧化鋅薄膜........................................................................14
2.6磁性理論....................................................................................14
2.7高導磁合金................................................................................17
2.8介電常數....................................................................................20
第三章實驗方法及步驟...........................................................................25
3.1實驗流程設計與設備介紹.........................................................25
3.1.1實驗流程設計...................................................................25
3.1.2製備鎳鐵、氧化鋅薄膜....................................................27
3.1.2.1基板準備................................................................27
3.1.2.2沈積鎳鐵、氧化鋅薄膜之參數..............................28
3.1.3製備鎳鐵/ 氧化鋅雙層複合薄膜....................................29
3.1.3.1沈積鎳鐵/ 氧化鋅雙層複合薄膜之參數.............29
3.1.4.製備氧化鋅/ 鎳鐵/ 氧化鋅三層複合薄膜...................31
3.1.3.1沈積氧化鋅/ 鎳鐵/ 氧化鋅三層複合薄膜之參數31
3.1.5射頻磁控濺鍍系統............................................................33
3.2薄膜微結構分析儀器介紹.........................................................36
3.2.1場發射掃描式電子顯微鏡................................................36
3.2.2原子力顯微鏡...................................................................38
3.2.3 X-ray繞射晶體結構分析儀..............................................40
3.3薄膜性質分析儀器介紹.............................................................42
3.3.1震動式樣品磁性量測儀....................................................42
3.3.2光致螢光光譜儀................................................................44
3.3.3精密阻抗分析儀................................................................45
第四章實驗結果與討論...........................................................................47
vi
4.1射頻功率對於氧化鋅、鎳鐵薄膜沈積影響..............................48
4.1.1 XRD繞射分析..................................................................49
4.1.2 SEM分析..........................................................................50
4.1.3氧化鋅薄膜之PL分析.....................................................51
4.2鎳鐵/ 氧化鋅複合薄膜研究....................................................61
4.2.1 XRD繞射分析..................................................................61
4.2.2 SEM分析..........................................................................63
4.2.3 AFM分析.............................................................. ............63
4.2.4 PL分析.............................................................................64
4.2.5 VSM分析..........................................................................65
4.2.6介電量測...........................................................................66
4.3氧化鋅/ 鎳鐵/ 氧化鋅複合薄膜研究....................................76
4.3.1 XRD繞射分析..................................................................76
4.3.2 SEM分析..........................................................................79
4.3.3 VSM分析.........................................................................79
4.3.4介電量測分析...................................................................80
第五章結論與未來展望...........................................................................93
5.1結論............................................................................................93
5.2未來展望....................................................................................94
參考文獻....................................................................................................95

[1] S. Choopun, R. D. V ispute, W. Noch, A. Balsamo, R. P. Sharma, T. Venkatesan, A. Iliadis, D. C. Look, “Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire”, Applied Physics Letters, vol. 75, pp. 3947, 1999.
[2] Dawber M, Rabe KM, Scott JF, “ Physics of thin-film ferroelectric oxides”, Rev Mod Phys, vol. 77, pp. 1083, 2005.
[3] Wang X, Summers CJ, Wang ZL, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays”, Nano Lett, vol. 4, No.3, pp. 423, 2004.
[4] M. Izaki, S. Watase, H. Takahashi, “Low-Temperature Electrodeposition of Room-Temperature Ultraviolet-Light-Emitting Zinc Oxide”, Advanced Materials, vol. 15, pp. 2000, 2003.
[5] Yamamoto T, Shiosaki T, Kawabata, “Characterization of ZnO piezoelectric films prepared by rf planar‐magnetron sputtering”, Journal of Applied Physics, vol. 51, pp. 3113, 1908.
[6] Wang ZL, Song J, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays”, Science, vol. 312, pp. 242-246, 2006.
[7] Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y. “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin film”, Applied Physics Letters, vol. 72, pp. 3270, 1998.
[8] Sang Hyuck Bae, Sang Yeol Lee, Beom Jun Jin, Seongil Im, “Pulsed laser deposition of ZnO thin films for applications of light emission”, Applied Surface Science, vol. 154, pp. 458, 2000.
[9] B.J. Jin, S.H. Bae, S.Y. Lee, S. Imc, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Materials Science and Engineering, vol. B71, pp. 301, 2000.
[10] D.C. Look, “Recent advances in ZnO materials and devices”, Materials Science and Engineering, vol. B80, pp. 383, 2001.
[11] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, vol. 292, pp. 1897, 2001.
[12] Y. Chen, “Plasma assisted molecular beam exitaxy of ZnO on-plane sapphire Growth and characterization”, Journal of Applied Physics, vol. 84, pp. 3912, 1998.
[13] S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light Emitting Diodes and Laser Diodes”, Science, vol. 281, pp. 956, 1998.
[14] Tawab Dastagir, Wei Xu, Saurabh Sinha, Hao Wu, Yu cao, Hongbin Yu, “Tuning the permeability of permalloy films for on-chip inductor applications”, Applied Physics Letters, vol. 7, pp. 62506, 2010.
[15] Sang-Gi Kim, Eui-Jung Yun, Jwa-Yeon Kim, Jongade Kim, Kyong-lk Cho, “Microfabrication and characteristics of double-rectangular spiral type thin-film inductors with an upper NiFe magnetic core”, Journal of Applied Physics, vol. 90, pp. 3533, 2001.
[16] Y. Zhuang, M. Vroubel, B. Rejaei, K. Attenborough, J.N. Burghatz, “Magnetic properties of electroplated nano/microgranular NiFe thin films for rf application”, Journal of Applied Physics, vol. 97, pp. 10N305, 2005.
[17] K.T. Huang, P.C. Kuo, G.P. Lin, Y.D. Yao, “Self-assembled Fe/Pt bilayered arrays on nanoporous anodic aluminum oxides” Solid State Communications, vol.149, pp. 2235, 2009.
[18] D. H. Wei, F. T. Yuan, H. W. Chang, K. L. You, Y. Liou, Y. D. Yao, and J. K. Wu, “Magnetization reversal and microstructure of FePt-Ag (001) particulate thin films for perpendicular magnetic recording media”, Journal of Applied Physics, vol. 103, pp. 07E116, 2008.
[19] D. H. Wei, F. T. Yuan, H. W. Chang, and Y. D. Yao, “Effects of Pt and Fe underlayers on the microstructure and magnetization reversal of epitaxial FePt films for high density magnetic recording”, Journal of Applied Physics, vol. 103, pp. 07E138, 2008.
[20] Y. Ding, D. H. Wei, and Y. D. Yao, “Magnetic properties and microstructure of Fe/Pt multilayer films capped with SiO2 amorphous layer for magnetic recording use”, Journal of Applied Physics, vol. 103, pp. 07E145, 2008.
[21] R. Wood, J. Miles, and T. Olson, “Recording technologies for terabit per square inch systems,” IEEE Transaction on Magnetic, vol. 38, pp. 1711, 2002
[22] M. Mallary, A. Torabi, and M. Benakli, “One terabit per square inch perpendicular recording conceptual design,” IEEE Transaction on Magnetics, vol. 38, pp. 1615, 2002.
[23] J. J. Miles and B. K. Middleton, “A hierarchical micromagnetic model of longitudinal thin film recording media,” Journal of Magnetism and Magnetic Materials, vol. 95, pp. 99, 1991.
[24] K. R. Coffey, T. Thomson, and J. U. Thiele, “Angular dependence of the switching field of thin film longitudinal and perpendicular magnetic recording media,” Journal of Applied Physics, vol. 92, pp. 4553, 2002.
[25] C.C. Yu, Y.D. Yao, S.C. Chou, “Magnetic properties of FePd films grown on Si antidots”, Journal of Magnetism and Magnetic Materials, vol. 310 pp. 2333, 2007.
[26] Takuma Hachisu, Wataru Sato, Shugo Ishizuka, Atsushi Sugiyama, Jun Mizuno, Tetsuya Osaka, “Injection of synthesized FePt nanoparticles in hole-patterns for bit patterned media”, Journal of Magnetism and Magnetic Materials, vol. 324, pp. 303, 2010.
[27] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, “Spintronics: A Spin-Based Electronics Vision for the Future”, Science, vol. 294, pp. 1488, 2001.
[28] H. Ohno, F. Matsukura and Y. Ohno et al., JSAP international No. 5, pp.4-13, 2002.
[29] H. Akinaga and H. Ohno, “Semiconductor Spintronics”, IEEE Transaction on nanotechnology, vol. 1, pp.19, 2002.
[30] Y. Matsumoto, M. Shono etal. “Room-Temperature Ferromagnetism in Transparent Transition Metal Doped Titanium Dioxide”, Science, vol. 291, pp. 854, 2001.
[31] Prashant. K. Sharma, Ranu K. Dutta, Avinash C. Pandey, “Alteration of magnetic and optical properties of ultrafine dilute magnetic semiconductor ZnO:Co2+ nanoparticles”, Journal of Colloid and Interface Science, vol. 345, pp. 149, 2010.
[32] J. H. Yang, Y. Cheng, Y. Liu, X. Ding, Y. X. Wang, Y. J. Zhang, H. L. Liu, “Structure and room-temperature ferromagnetism of Co-doped ZnO DMS films”, Solid State Communications, vol. 149, pp. 1164, 2009.
[33] Michael Snure, Dhananjay Kumar , Ashutosh Tiwari, “Progress in Zno-based diluted magnetic semiconductors”, Journal of The Minerals, Metals and Materials Society, vol. 61, pp. 72, 2009.
[34] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors”, Science, vol. 287, pp.1019, 2000.
[35] K. Sato, H. Katayama, Yoshida, “Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors” Japanese Journal of Applied Physics, vol. 39, pp. L555, 2000.
[36] Yuji Matsumoto, Makoto Murakami, Tomoji Shono, Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki, Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara, Hideomi Koinuma, “Room-Temperature Ferromagnetism in Transparent Transition Metal Doped Titanium Dioxide”, Science, vol. 291, pp. 854, 2001.
[37] 蘇清森,“真空技術”,東華書局,1992。
[38] Jiun-Yi Tseng, Wang-Chieh Yu, Chih-Wei Hsu, Chao-Jen Ho, Tzer-Shen Lin, Cheng-Yi Wang, Yung-Fu Hsu, and Sea-Fue Wang, “Deposition of low resistivity gallium-doped zinc oxide films by low temperature radio-frequency magnetron sputtering”, EMRS 2008 Spring Meeting, Strasbourg, France (2008/5/25~30).
[39] L. Eckertova, T. Ruzicka, “Diagnostics and Applications of Thin Films”, CH.1 & 2, Institute of Physics Publishing, 1993.
[40] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings.” Journal Vacuum Science. Technology, vol.11, pp. 666, 1974.
[41] G. Neumann, Phys. Status Solids, vol. 105, pp.605, 1981.
[42] 張坤榮,摻雜鋁於氧化鋅透明導電膜之光特性與電特性研究,碩士論文,國立中央大學,桃園,2004。
[43] D. J. Leary, J. O. Barnes, A. G. Jordan, “Relationship Between Deposition Conditions and Physical Properties of Sputtered ZnO”, Journal of Electrochemical Society, vol.167, pp.1636, 1980.
[44] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, “ZnO Schottky ultraviolet photodetectors”, Journal of Crystal Growth, vol.225, pp.110, 2001.
[45] F. S. Hickernell,“Zinc Oxide Films for Acoustoelectric Device Applications ”, IEEE Transactions on Sonics and Ultrasonics, vol. SU-32, pp. 621, 1985.
[46] S. Basu, A. Dutta, “Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application”, Sensors and Actuators B, vol. 22, pp. 83, 1994.
[47] M. Wwraback, H. Shen, S. Liang, C. R. Gorla, Y. Lu, “High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire” Applied Physics Letters, vol.74, pp.507, 1999.
[48] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films” Applied Physics Letters, vol.72, pp.3270, 1998.
[49] A. Mitra, R. K. Thareja, “Photoluminescence and ultraviolet laser emission from nanocrystalline ZnO thin films” Journal of Applied Physics, vol. 89, pp.2025, 2001.
[50] D. Calestani, M. Zhaa, R. Mosca, A. Zappettini, M.C. Carotta, V. Di Natale, L. Zanotti, “Growth of ZnO tetrapods for nanostructure-based gas sensors”, Sensors and Actuators B, vol. 44, pp. 72, 2010.
[51] Danny H. W. Li, Joseph C. Lam, Chris C. S. Lau, T. W. Huan, “Lighting and energy performance of solar film coating in air-conditioned cellular offices”, Renewable Energy, vol. 29, pp. 921, 2004.
[52] Sang-Hun Jeong, Bong-Soo Kim, Byung-Teak Lee, “Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient”, Apply Physics Letters, vol. 82, pp. 2625, 2003.
[53] V. R. Shinde, C. D. Lokhande, R. S. Mane, Sung-Hwan Han, “Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect”, Applied Surface Science, vol. 245, pp. 407, 2005.
[54] Ren-De Sun, Akira Nakajima, Akira Fujishima, Toshiya Watanabe, Kazuhito Hashimoto, “Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films ”, Journal of Physics Chemical B, vol. 105, pp. 1984, 2001.
[55] F. K. Shan, Y. S. Yu, “Band gap energy of pure and Al-doped ZnO thin films”, Journal of Euroean Ceramic Society, vol. 24, pp. 1869, 2004.
[56] R. D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R. P. Sharma, T. Venkatesan, M. C. Woods, R. T. Lareau, K. A. Jones, A. A. Iliadis, “High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for III–V nitrides”, Apply Physics Letters, vol. 70, pp. 2735, 1997.
[57] B.D.Cullity, Introduction to Magnetic Materials, Addison.
[58] C.Kittel, Introduction of Solid State Phys, 7th ed ,John Wiley&Sons inc ,New York , 1997.
[59] 劉國雄、林樹均、李勝隆、鄭晃忠、葉鈞蔚,“機械材料學”,全華科技圖書股份有限公司(1996)。
[60] G. Ertl, J. Kuppers “Low-Energy Electrons and Surface Chemistry” ,VCH (1985).
[61] J.Nogues, I.K.Schuller, “Exchange bias”, Journal of Magnetism and Magnetic Materials, vol. 192, pp.203, 1999.
[62] R. Lawrence. Comatock,”Introduction to Magnetism and Magnetic Recording”,Chapter 5,John Wiely & Sons Inc.,1999.
[63] 鄭振東,“實用磁性材料學”,全華科技出版社,(1999)。
[64] V. D. Nguyen, C. Naylor, L. Vila, A. Marty, P. Laczkowski, C. Beigne’, L. Notin, Z. Ishaque, J. P. Attane, “Magnon magnetoresistance of NiFe nanowires: Size dependence and domain wall detection”, Applied Physics Letters, vol. 99, pp. 262504, 2011.
[65] E. Saitoh, M. Tanaka, H. Miyajima, T. Yamaoka, “Domain-wall trapping in a ferromagnetic nanowire network”, Journal of Applied Physics, vol. 93, pp. 7444, 2003.
[66] T. Yamaoka, K. Watanabe, Y. Shirakawabe, K. Chinone, E. Saitoh, M. Tanaka, H. Miyajima, “Applications of High-Resolution MFM System With Low-Moment Probe in a Vacuum”, IEEE Transcations on Magnetics, vol. 41, pp. 3733, 2005.
[67] 金重勳,磁性技術手冊,中華民國磁性技術協會出版(2002)。
[68] 陳文照,曾春風,遊信和。「材料科學工程」。高立圖書有限公司,頁數767-776,民國88 年,初版。
[69] 吳朗,電子陶瓷(介電),全欣科技圖書股份有限公司,頁數 69-73,1994。
[70] Authur von Hippel, “Dielectric and Wave”, New York: Wiley, 96, pp. 4-7, 1957.
[71] Robert W. Berry, Peter M. Hall, Muray T. Harris, “Thin Film Technology”, Van Nostrand Reinhold, P. 201, 1980.
[72] 楊孟儒,以濺鍍法控制方向性鉑底電極成長C軸擇優取向氮化鋁薄膜,碩士論文,國立台灣科技大學材料科技研究所,2007年7月。
[73] 林宗憶,以射頻磁控濺鍍法沈積高品質類鑽碳薄膜之機械及光學性質研究,碩士論文,國立臺北科技大學製造科技研究所,2006年7月。
[74] 許嘗軒,節能減碳之活塞環曲面類鑽碳複合鍍膜技術,碩士論文,國立臺北科技大學機電整合研究所,2008年7月。
[75] 汪健民,材料分析,新竹,中國材料科學學會,1998。
[76] B. Fultz, J. M. Howe, Transmission Electron Microscopy and Diffractometry of Materials Springer-Verlag Berlin Hedelberg, 2001.
[77] D. S. Hung, Y. D. Yao, D. H. Wei, K. T. Wu, J. C. Hsu, T. Ding, and Y. C. Chen, “Permittivity study of multiferroic AlN/NiFe/AlN multilayer films”, Journal of Applied Physics, vol. 103, pp. 07E318, 2008.
[78] K. Ghandhi, “VLSI fabrication principles:Si and GaAs”, John Wiley & Sons, INC, pp. 522-575, 1994.
[79] C.R. Aita, A.J. Purdes, R.J. Lad, and P.D. Funkenbusch, “The effect of O2 on reactively sputtered zinc oxide”, Journal of Applied Physics, vol. 51, pp. 5533, 1980.
[80] Norifumi Fujimura, Tokihiro Nishihara, Seiki Goto, Jifang Xu and Taichiro lto, “Control of preferred orientation for ZnO x films: control of self-texture”, Journal of Crystal Growth, vol.130, pp. 269, 1993.
[81] K. Charles, “Introduction of Solid State Physics”, Chapter 3, 7th Ed., 1996.
[82] Lin B X, Fu Z X, Jia Y B and Liao G H, Chin. J. Luminescence, vol. 22, pp.167, 2001.
[83] Wu H Z, Qiu D J, Cai Y J, Xu X L, Chen N B, “Optical studies of ZnO quantum dots grown on Si(001)”, Journal of Crystal Growth, vol. 245, pp. 50, 2002.
[84] A. F. Kohan, G. Ceder, D. Morgan, “First-principles study of native point defects in ZnO”, Physical Review B, vol. 61, pp. 15019, 2000.
[85] X M Teng, H T Fan, S S Pan, C Ye and G H Li, “Photoluminescence of ZnO thin films on Si substrate with and without ITO buffer layer”, Journal of Physics D: Applied Physics, vol. 39, pp. 471, 2006.
[86] Takahiro Matsumoto, Hiroyuki Kato, Kazuhiro Miyamoto, Michihiro Sano, Evgeniy A. Zhukov and Takafumi Yao, “Correlation between grain size and optical properties in zinc oxide thin films”, Apply Physics Letter, vol. 81, No. 7, 2002.
[87] Quan-Bao Ma, Zhi-Zhen Ye, Hai-Ping He, Shao-Hua Hu, Jing-Rui Wang, Li-Ping Zhu, Yin-Zhu Zhang and Bing-Hui Zhao, “Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering”, Journal of Crystal Growth, vol. 304, pp. 64, 2006.
[88] Zhijun Wang, Shouchun Li, Mucui Ni, Li Liu, Jinbao Zhang, Lianyuan Wang, Yunxian Tian , Zeheng Wang and Aiguo Wei, “Photoluminescence Study of the Interface of Nanocrystalline ZnO/Amorphous ZnO”, IEEE, 978-1-4244-4964-4, 2010.
[89] Kyoung-Kook Kim, Jae-Hoon Song, Hyung-Jin Jung, and Won-Kook Choi, Seong-Ju Park, Jong-Han Song and Jeong-Yong Lee, “Photoluminescence and heteroepitaxy of ZnO on sapphire substrate (0001) grown by rf magnetron sputtering”, Journal of Vacuum Science Technology, vol. 18, pp. 2864, 2000.
[90] Su-Shia Lin, Jow-Lay Huanga and Ding-Fwu Lii, “The effects of r.f. power and substrate temperature on the properties of ZnO films” Surface and Coatings Technology, vol. 176, pp. 173, 2004.
[91] Y.M. Lua, W.S. Hwang, W.Y. Liu and J.S. Yang, “Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering”, Materials Chemistry and Physics, vol. 72, pp. 269, 2001.
[92] H. S. Bhatt I, Rajesh Sharma, N. K. Verma, “Fast photoluminescence decay processes of doped CaS Phosphors”, Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology, vol. 161, pp. 113, 2006.
[93] Guo, Yang; Cao, Xuebo; Lan, Xianmei; Zhao, Cui; Xue, Xiudong; Song, Yingying, “Solution-Based Doping of Manganese into Colloidal ZnO Nanorods”, Journal of Physical Chemistry C, vol. 112, pp. 8832, 2008.
[94] Z. X. Yang, W. Zhong,, C. T. Au, X. Du, H. A. Song, X. S. Qi, X. J. Ye, M. H. Xu, Y. W. Du, “Novel Photoluminescence Properties of Magnetic Fe/ZnO Composites: Self-Assembled ZnO Nanospikes on Fe Nanoparticles Fabricated by Hydrothermal Method”, Journal of Physical Chemistry C, vol. 113, pp. 21269, 2009.
[95] Eugene Oh, Seung-Ho Jung, Kun-Hong Lee, Soo-Hwan Jeong, SeGi Yu, Seuk Joo Rhee, “Vertically aligned Fe-doped ZnO nanorod arrays by ultrasonic irradiation and their photoluminescence properties”, Materials Letters, vol. 62, pp. 3456, 2008.
[96] Look DC, Reynolds DC, Sizelove JR, Jones RL, Litton CW, Cantwell G, Harsch WC, “Electrical properties of bulk ZnO”, Solid State Communications, vol. 105, pp. 399, 1998.
[97] M. D. McCluskey, S. J. Jokela, “Defects in ZnO”, Journal of Applied Physics, vol. 106, pp. 071101, 2009.
[98] Jung-Hwan Song, Toru Akiyama, Arthur J. Freeman, “Stabilizing mechanism of the dipolar structure and its effects on formation of carriers in wurtzite (0001) films: InN and ZnO”, Physical Review B, vol. 77, pp. 035332, 2008.
[99] Bhattacharya S, Saha SK, Chakravorty D, “Nanowire formation in a polymeric film” Applied Physics Letter, vol. 76, pp. 3896, 2000.
[100] Manoj K. Gupta , Nidhi Sinha , B.K. Singh, Binay Kumar, “Synthesis of K-doped p-type ZnO nanorods along (100) for ferroelectric and dielectric applications”, Materials Letters, vol. 64, pp. 1825. 2010.
[101] Ramna Tripathi, Akhilesh Kumar, Chandrahas Bharti, T.P. Sinha, “Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method”, Current Applied Physics, vol. 10, pp. 676, 2010.
[102] M. Soosen Samuel, Jiji Koshy, Anoop Chandran, K.C. George, “Dielectric behavior and transport properties of ZnO nanorods”, Physica B, vol. 406, pp. 3023, 2011.
[103] Jiun-Yi Tseng, Tai-Bor Wu, “Dielectric enhancement in (001)-textured BaTiO3/LaNiO3 superlattice”, Materials Chemistry and Physics, vol. 88, pp. 433, 2004.
[104] Z.-M. Dang, L.-Z. Fan, S.-J. Zhao, C.-W. Nan, “Preparation of nanosized ZnO and dielectric properties of composites filled with nanosized ZnO”, Materials Science and Engineering B, vol. 99, pp. 386, 2003.
[105] Zhi-Min Danga, Dan Xie, Yan-Fei Yu, Hai-Ping Xua, Yu-Dong Houd, “Enhancement of dielectric permittivity in the ZnO/PZT ceramic matrix nanocomposites”, Materials Chemistry and Physics, vol. 109, pp. 1, 2008.
[106] W. M. Lu, J. R. Sun, Y. Z. Chen, D. S. Shang, B. G. Shen, “Buffer layer-enhanced magnetic field effect in manganite-based heterojunctions”, Applied Physics Letters, vol. 95, pp. 232514, 2009.
[107] Ce-Wen Nan, Gang Liu, Yuanhua Lin, “Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of Tb1−xDyxFe2 and PbZrxTi1−xO3”, Applied Physics Letters, vol. 83, pp. 4366, 2003.
[108] N. Cai, J. Zhai, C.-W. Nan, Y. Lin, Z. Shi, “Dielectric, ferroelectric, magnetic, and magnetoelectric properties of multiferroic laminated composites”, Physical Review B, vol. 68, pp. 224103, 2003.
[109] L. Yan, M. Zhuo, Z. Wang, J. Yao, N. Haberkorn, S. Zhang, L. Civale, J. Li, D. Viehland, Q. X. Jia, “Magnetoelectric properties of flexible BiFeO3/Ni tapes”, Applied Physics Letters, vol. 101, pp. 012908, 2003.
[110] G. Srinivasan, E. T. Rasmussen, B. J. Levin, R. Hayes, “Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides”, Physical Review B, vol. 65, pp. 134402, 2003.
[111] Jie Wang, Yifan Xia, Long-Qing Chen, San-Qiang Shi, “Effect of strain and deadlayer on the polarization switching of ferroelectric thin film”, Applied Physics Letters, vol. 110, pp. 114111, 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊