跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范富雄
研究生(外文):Fu-Hsiung Fan
論文名稱:氧化鈦摻雜氧化鎢陣列式奈米棒光電特性之研究
論文名稱(外文):The study on electro-optical properties of titanium oxide doped nanorods array of tungsten oxide.
指導教授:蘇程裕蘇程裕引用關係
指導教授(外文):Cherng-Yuh Su
口試委員:施劭儒林中魁
口試委員(外文):Shao-Ju shihChung-Kwei Lin
口試日期:2012-06-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:59
中文關鍵詞:磁控濺鍍退火氧化鈦氧化鎢場發射
外文關鍵詞:Magnetron SputteringAnnealingTungsten OxideField Emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用直流磁控濺鍍製程配合紅外線加熱爐退火處理並通入反應氣體(Ar:O2=200:1),分別探討在不同的濺鍍功率(50~130W)、退火溫度(650~850℃)、退火時間(10~30min)對於產物的形貌、相態及結構的影響。研究中發現;退火製程隨著濺鍍功率、退火溫度的不同,薄膜會開始成核成長逐漸轉變為一維奈米結構,而且隨著生成時間的增加,一維奈米結構的數量也會逐漸增多,長度最高可達500nm。微結構分析得知,所製備之氧化鈦摻雜氧化鎢奈米棒為WO2.83相態,晶格成長方向是延著(010)及(103)晶面成長,並由HRTEM的結果得知晶格間距(d-spacing)為0.378nm及0.373nm,與XRD結果相符。
因此,本研究利用直流磁控濺鍍製程配合紅外線加熱爐退火處理成功製備出一維氧化鈦摻雜氧化鎢奈米材料,在小於370nm時,開始會有光吸收之特性產生,當更進一步透過光激發螢光光譜之分析,可發現分別於紫外光(370nm)、藍光(455nm)及綠光(523nm)波段位置相對產生,其原因分別為帶間躍遷和氧缺陷以及單獨的氧離子空缺或是金屬雜質所產生之電子電洞對再結合現象所產生,且本材料具有場發射的特性,其起始電場約為3.2V/μm,未來可作為場發射元件之應用。


In this study, the titanium oxide doped nanorods array of tungsten oxide were prepared using DC magnetron sputtering followed by annealing treatment at reactive atmosphere. We adjusted various fabricated parameters such as the sputtering power (50–130 W), annealing temperature (650–850 °C) and annealing duration (10–30 min) to investigate their impact on the morphology, phase, and microstructure. We observe that the thin films could gradually transform into one-dimensional nanostructure with varying sputtering power and annealing temperature. Furthermore, the quantity of one-dimensional nanostructure augments markedly when the growth duration increase to 10–30 min. The growth length of one-dimensional nanostructure could enhance as high as 500 nm. The results of microstructure analysis indicate that the titanium oxide doped nanorods of tungsten oxide present WO2.83 phase with (010) and (103) growth plane. Using HRTEM, the d-spacing of (010) and (103) plane is 0.378 nm and 0.373 nm, respectively. In the research, as a result, we utilized DC magnetron sputtering and IR heating furnace to synthesize one-dimensional titanium oxide doped nanomaterial of tungsten oxide. According some literature of UV-visible analysis, the character of light absorption would produce at the wavelength of below 370 nm. In photoluminescence (PL) analysis, we observe that the characteristic peaks of 370 nm (ultraviolet), 455 nm (blue), and 523 nm (green) are dominant. The results can be attributed to the electron-pole pair recombination facilitated by intrinsic band-to-band transition, vacancy of oxygen ion, and/or metal impurity. The turn-on field of titanium oxide doped nanomaterial of tungsten oxide is 3.2V/μm and it could emerge as a promising candidate for field emission application on account of its specialized characteristics.

目錄

摘要 i
ABSTRACT ii
誌謝iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 奈米材料 1
1.2異種元素摻雜型半導體材料 2
1.3 氧化鎢 2
1.4 氧化鈦 4
1.5 研究動機與目的 5
1.6 本文架構 8
第二章 文獻回顧 9
2.1奈米材料特性 9
2.2 過渡元素摻雜氧化鎢奈米材料之光電特性 10
2.2.1光學及光觸媒特性 10
2.2.2 電致色變特性 14
2.2.3電子場發射特性 16
2.2.4氣體感測特性 17
2.3奈米摻雜材料相關製程 19
2.3.1氧化鎢複合薄膜 19
2.3.2 過渡元素摻雜氧化鎢之奈米棒 20
第三章 實驗方法與步驟 22
3.1 實驗流程 22
3.2 試片準備及清洗 22
3.3 直流磁控濺鍍製程 23
3.4 退火製程 25
3.5 分析儀器及原理 26
3.5.1 場發射掃描式電子顯微鏡(FESEM) 26
3.5.2 能量分佈光譜儀(EDS) 27
3.5.3原子力顯微鏡(AFM) 27
3.5.4穿透式電子顯微鏡(TEM&HRTEM) 27
3.5.5 X-ray繞射儀(XRD) 28
3.5.6 X射線光電子能譜儀(ESCA) 28
3.5.7 紫外光-可見光吸收光譜儀(UV-Visible) 29
3.5.8光激發螢光光譜儀( PL ) 29
3.5.9 場發射量測系統(Field Emission) 29
第四章 結果與討論 31
4.1濺鍍功率及退火溫度對成長奈米棒之影響 31
4.1.1鎢濺鍍功率及退火溫度對成長奈米棒之影響 31
4.1.2鈦濺鍍功率及摻雜量對成長奈米棒之影響 33
4.1.3 生成時間對成長奈米棒的影響 36
4.2 氧化鈦摻雜氧化鎢奈米材料成份及結構分析 37
4.2.1 X-ray繞射分析 37
4.2.2 氧化鈦摻雜氧化鎢奈米棒XPS分析 38
4.2.3 晶體結構分析 39
4.3 氧化鈦摻雜氧化鎢奈米棒之光學特性檢測 42
4.3.1 UV-Visble 吸收光譜分析 42
4.3.2光激發螢光光譜分析 43
4.3.3電子場發射特性檢測 44
4.4 氧化鈦摻雜氧化鎢奈米材料成長機制 46
第五章 結論 50
參考文獻 51
作者簡介 60



[1]H. W. Pollack, Materials science and metallurgy, 4th Edition, Englewood Cliffs New Jersey Prentice-Hall, 1988.
[2]L. F. Chi, S. Z. Deng, N. S. Xu, J. Chen, J. C. She, X. H. Liang, "The study of optimizing growth conditions for improving field emission property of W18O49 nanorod arrays," Journal of Physics: Conference Series, vol. 188, no. 012021, 2009.
[3]S.A. Curran, D. Zhang, W.T. Wondmagegn, A.V. Ellis, J. Cech, S. Roth, D.L. Carroll, J. Mater, "Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding, " Journal of Materials Research , vol. 21, no. 4, 2006, pp. 1071-1077.
[4]J. P. Huang, K. W. Yu, "Enhanced nonlinear optical responses of materials: Composite effects," Physics Reports , vol. 431,no. 3, 2006, pp. 87-172.
[5]N. Hari Babu, K. Iida, D. A. Cardwell, "Enhanced magnetic flux pinning in nano-composite Y-Ba-Cu-O superconductors," Physica C: Superconductivity and its Applications , vol. 445-448, 2006, pp. 353-356.
[6]Md. M. H. Bhuiyan, T. Ueda, T. Lkegami, K. Ebihara, "Gas sensing properties of metal doped WO3 thin film sensors prepared by pulsed laser deposition and DC sputtering process," Japanese Journal of Applied Physics , vol. 45, 2006, pp. 8469-8472.
[7]F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfolda, J. H. Harding, "Growth of ZnO thin films - Experiment and theory," J. Mater. Chem., vol. 15 ,2005, pp. 139–148.
[8]M. Law, L.E. Greene, J.C. Johnson, R. Saykallyl, P. Yang, "Nanowire dye-sensitized solar cells", Nature materials, vol. 4 ,2005, pp. 455-459.

[9]G. R. St. Pierre, W. T. Ebihara, M. J. Pool and R. Speiser, Transactions of the Metallurgical Society of AIME, vol. 224, 1963, pp. 259-264.
[10]Y. M. Solonin, O. Y. Khyzhun and E. A. Graivoronskaya, "Nonstoichiometric tungsten oxide based on hexagonal WO3, " Crystal Growth and Design, vol. 1, no. 6, 2001, pp. 473-477.
[11]B. Chapman, Glow discharge process-sputtering and plasma etching, Canada: John Wiley & Sons, 1980.
[12]G. L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro and R. Tenne, "Investigations of nonstoichiometric tungsten oxide nanoparticles, " Journal of Solid State Chemistry, vol. 162, issue 2, 2001, pp. 300-314.
[13]M. G. Charlton, "Hydrogen reduction of tungsten trioxide, " Nature, vol. 169, issue 4290, 1952, pp. 109-110.
[14]D. S. Venables and M. E. Brown, "Reduction of tungsten oxides with carbon monoxide, " Thermochimica Acta, vol. 291, no. 1-2, 1997, pp. 131-140.
[15]K. Bange, and T. Gambke, "Structural Studies of Tungsten–Titanium Oxide Thin Films, " Journal of Solid State Chemistry, vol. 121, no. 2, 1996, pp. 379-387.
[16]S. O’Neill, I.P. Parkin, R.J.H. Clark, A. Mills and N. Elliott, "Photocatalytically Active-WO3 Films from Atmospheric Pressure CVD of WOCl4 with Ethyl Acetate or Ethanol, " Chemical Vapor Deposition, vol. 10, no. 3, 2004, pp. 136-141.
[17]M. Sriyudthsak and S. Supothina, "Humidity-insensitive and low oxygen dependence tungsten oxide gas sensors, "Sensors and Actuators, B: Chemical, vol. 113, no. 1, 2006, pp. 265-271.
[18]G. A. Niklasson, J. Klasson, E. Olsson, "Polaron absorption in tungsten oxide nanoparticle aggregates, " Electrochimica Acta , vol. 46, 2001, pp. 1967-1971.
[19]Y. M. Zhao, Y. H. Li, I. Ahmad, D. G. McCartney, Y. Q. Zhu, W. B. Hu, "Two-dimensional tungsten oxide nanowire networks, "Applied Physics Letters , vol. 89, no. 13, 2006, pp. 133116-133116-3.
[20]F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfolda, J. H. Harding, "Growth of ZnO films, experiment and theory, " J. Mater. Chem., vol. 15, 2005, pp. 139-148.
[21]Barksdale, Jelks, The Encyclopedia of the Chemical Elements, Skokie Illinois: Reinhold Book Corporation, 1968, pp. 732–38.
[22]L. M.Sheppard, New Ceramics on the Horizon, Mat. Eng., 1984.
[23]U. Diebold, "The surface science of titanium dioxide," Surface Science Report, vol. 48, no. 5-8, 2003, pp. 53-229.
[24]K. I. Hadjiivanov, D. K. Klissurski, "Surface chemistry of titania (anatase) and titania-supported catalysts, " Chem. Soc. Rev. , vol. 25, 1996, pp. 61-69.
[25]A. Heller, "Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films, " Chem. Soc. Rev. , vol. 28, 1995, pp. 503-508.
[26]A. L. Linsebigler, G. Lu, J. T. Yates, "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, "Chem. Rev., vol. 95, 1995, pp. 735-758.
[27]T. Uma, M. Nogami, "Characterization and performance improvement of H2/O2 fuel cells based on glass membranes," J. Electrochem. Soc., vol. 154, 2007, pp. B845-B851.
[28]X. Z. Li, F. B. Li, C.L. Yang, W. K. Ge, "Photocatalytic activity of WOx-TiO2 under visible light irradiation, " J. Photochem. Photobiol, A, Chem., vol. 141, 2001, pp. 209-217.
[29]P. Nelli, G. Sberveglieri, in A. D''Amico, G. Sberveglieri (eds.), Sensors for Domestic Applications, World Scientific, Boston, 1995, pp. 37–48.
[30]賴宏仁、林景正,「奈米材料與技術專題」,工業材料153期,1999年9月,第94-101頁。
[31]A. Subrahmanyam and A. Karuppasamy, "Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films, " Solar Energy Materials and Solar Cells, vol. 91, issue 4, 2007, pp. 266-274.
[32]K. Lee, W. S. Seo and J. T. Park, "Synthesis and optical properties of colloidal tungsten oxide nanorods, " Journal of the American Chemical Society, vol. 125, no. 12, 2003, pp. 3408-3409.
[33]X. Chang, S. Sun, X. Xu, Z. Li, "Synthesis of transition metal-doped tungsten oxide nanostructures and their optical properties, " Materials Letters , vol. 65, 2011, pp. 1710-1712.
[34]H. S. Bae, M. K. Lee, W. W. Kim and C. K. Rhee, "Dispersion properties of TiO2 nanopowder synthesized by homogeneous precipitation process at low temperatures, " Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 220, no. 1-3, 2003, pp. 169-177.
[35]A. Rampaul, I. P. Parkin, S. A. O’Neill, J. DeSouza, A. Mills, N. Elliott, "Titania and tungsten doped titania thin films on glass; active photocatalysts, "Polyhedron, vol. 22, 2003, pp. 35-44.
[36]D. Beydoun, R. Amal, Gary K.-C. Low and S. McEvoy, "Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution, " Journal of Physical Chemistry B, vol. 104, no. 18, 2000, pp. 4387-4396.
[37]M. Miyauchi, A, Nakajima, T. Watanabe, K. Hashimato, "Photoinduced hydrophilic conversion of TiO2/WO3 layered thin films, " Chemistry of Materials , vol. 14, 2002, pp. 4714-4720.
[38]C. Shifu, C. Lei, G. Shen, C. Gengyu, "The preparation of coupled WO3/TiO2 photocatalyst by ball milling, " Powder Technology , vol. 160, 2005, pp. 198-202.
[39]D. Ke, H. Liu, T. Peng, X. Liu, K. Dai, "Preparation and photocatalytic activity of WO3/TiO2nanocomposite particles, " Materials Letters, vol. 62, 2008, pp. 447-450.
[40]E. Stathatos, T. Petrova and P. Lianos, "Study of the efficiency of visible-light photocatalytic degradation of basic blue adsorbed on pure and doped mesoporous titania films, " Langmuir, vol. 17, 2001, pp. 5025-5030.
[41]X. Z. Li, F.B. LI, C.L. Yang, W.K. Ge, "Photocatalytic activity of WOx-TiO2 under visible light irradiation, " Journal of Photochemistry and Photobiology A: Chemistry, vol. 141, 2001, pp. 209-217.
[42]呂信德,磁控濺鍍TiO2-WO3 複合膜光催化性質之研究,碩士論文,國立成功大學資源工程學系,台南,2003。
[43]S. K. Deb, Apply. Optics, supp.vol. 3, 1969, pp.192.
[44]N. Özer, "Optical and electrochemical characteristics of sol-gel deposite tungsten oxide films: a comparison", Thin Solid Films, vol. 304,1997,pp.310-314.
[45]H. Kaneko, F. Nagao and K. Miyake, "Preparation and properties of the dc reactively sputtered tungsten oxide films", Journal of Applied Physics, vol. 63, 1988, pp.510-517.
[46]S. S. Sun, P.H. Holloway, "Modification of the Electrochromic Response of WO3 Thin-Films by Oxygen Backfilling", Journal of Vacuum Science and Technology A, vol. 2, 1984, pp. 336-340.
[47]J. G. Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna,C. Bechinger, J. Electrochem, "Chromic Mechanism in Amorphous WO3 Films", Journal of The Electrochemical Society, vol.144, no. 6, 1997, pp. 2022-2026.
[48]林宗隆,氧化鎢、氧化鈦單層膜及多層膜之製備及其電致色變特性研究,碩士論文,國立東華大學材料科學與工程學系,花蓮,2003
[49]I. Porqueras, E. Bertran, "Electrochromic behaviour of nickel oxide thin films deposited by thermal evaporation" Thin Solid Films, vol. 398, 2001, pp. 41
[50]R. Gomer, Harvard University Press, vol. 34, 1961.
[51]J. B. Cui, Daghlian, C. P. Gibson, U. J.Pusche, R. Geithner, P. L. Ley, "Low-temperature growth and field emission of ZnO nanowire arrays"Journal of Applied Physics, vol. 97, 2005, pp. 044315-1-004315-7.
[52]J. Zhou, S. Z. Deng, N. S. Xu, J. Chen, J. C. She, "Synthesis and field-emission properties of aligned MoO3 nanowires"Applied Physics Letters, vol. 83, 2003, pp. 2653-2655.
[53]C. T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, "Field emission from various Cuo nanostructures", Applied Physics Letters, vol. 83, 2003, pp. 3383-3385.
[54]S. Q. Li, Y. X. Liang, T. H. Wang, "Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires", Applied Physics Letters, vol. 87, no. 143104, 2005, pp. 1-3.
[55]M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D. Chen, Y. W. Lan and L. J. Chen, "Nitrogen-Doped Tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties, " small, vol. 3 no. 4, 2007, pp. 658.
[56]Y. Li, Y. Bando, D. Golberg, "Quasi-aligned single-crystalline W18O49 nanotubes and nanowires", Advanced Materials, vol. 15, 2003, pp. 1291-1296.
[57]J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. Yang, Z. L. Wang, "Growth and field-emission property of tungsten oxide nanotip arrays", Applied Physics Letters, vol. 87, no. 223108, 2005, pp. 1-3.
[58]Y. M. Zhao, Y. H. Li, I. Ahmad, D. G. McCartney , Y. Q. Zhua, "Two-dimensional tungsten oxide nanowire networks" Applied Physics Letters, vol. 89, 2006, no.133116,
[59]S. M. Sez, Semiconductor seneors, NEW YORK, John Wiley&sons, 1994, pp.383.
[60]C. Xu, J. Tamaki, N. Miura, N. Yamazoe, "Grain size effects on gas sensitivity of porous SnO2-based elements", Sensors and Actuators: B. Chemical, vol. 3, 1991, pp. 147-155.
[61]Y. S. Kim, S. C. Ha, K. Kim, H. Yang, S. Y. Choi, Y. T. Kim, "Effect of thin iridium oxide on the formation of interface dipole in organic light-emitting diodes "Applied Physics Letters, vol. 86, no. 213105, 2005, pp. 1-3.
[62]L. E. Depero, S. Groppelli, I. Natali-Sora, L. Sangaletti, G. Sberveglieri, E. Tondello, "Structural studies of tungsten-titanium oxide thin films", Journal of Solid State Chemistry, vol. 121, 1996, pp. 379-387.
[63]P. Nelli, L. E. Depero, M. Ferroni, S. Groppelli, V. Guidi, F. Ronconi, L. Sangaletti, G. Sberveglieri, "b-ppm NO2 sensors based on nanosized thin films of titanium-tungsten oxides", Sensors and Actuators, B: Chemical, vol. 31, 996, pp. 89-92.
[64]L. Sangaletti, L.E. Depero, G. Sberveglieri, B. Allieri, E. Bontempi, S. Groppelli, J. "Growth of WO3 crystals from W-Ti-O thin films", Crystal Growth, vol. 198-199, 1999, pp. 1240-1244
[65]M. Ferroni, D. Boscarino, E. Comini, D. Gnani, V Guidi, G. Martinell, P. Nelli, V Rigato, G. Sberveglieri, "Nanosized thin films of tungsten-titanium mixed oxides as gas sensors", Sensors and Actuators, B: Chemical, vol. 58, 1999, pp. 289-294.
[66]G. S. Cao, Q. S. Yu, X. G. Dong, X. C. Song, F. Tan, "Synthesis of tungsten oxide nanorods doped with transition metal molybdenum", Journal of inorganic materials, vol. 20, no. 4, 2005, pp. 815-820.
[67]W. Smith, Y. Zhao, "Enhanced photocatalytic activity by aligned WO 3/TiO 2 two-layer nanorod arrays", Journal of Physical Chemistry C, vol. 112, 2008, pp. 19635-19641.
[68]Y. Liu, S. Wang, T. Wang, Z. Xu, W. Chen, J. Jiang, J. Wei, "Preparation of WO 3/TiO 2 nanorod composites and its photocatalytic activity", Cuihua Xuebao/Chinese Journal of Catalysis, vol. 31, 2010, pp. 485-489.
[69]K. O. Rocha, S. M. Zanetti, "Structural and properties of nanocrystalline WO3/TiO 2-based humidity sensors elements prepared by high energy activation", Sensors and Actuators, B: Chemical, vol. 157, 2011, pp. 654-661.
[70]C. H. Chen, S. J. Wang, R. M. Ko, Y. C. Kuo, K. M. Uang, T. M. Chen, B.W. Liou and H.Y. Tsai, "The influence of oxygen content in the sputtering gas on the self-synthesis of tungsten oxide nanowires on sputter-deposited tungsten films", Nanotechnology, vol. 17, 2006, pp. 217-223.
[71]S. Jeon, K. Yong, "Direct synthesis of W18O49 nanorods from W2N film by thermal annealing, " Nanotechnology, vol. 18, 2007, p. 245602(7pp).
[72]S. Pal and C. Jacob, "Novel technique for large scale production of spherical tungsten oxide nanoparticles," Journal of Materials Science, vol. 41, no. 17, 2006, pp. 5429-5432.
[73]G. Leftheriotis, S. Papaefthimiou, P. Yianoulis, A. Siokou, and D. Kefalas, "Structural and electrochemical properties of opaque sol–gel deposited WO3 layers," Applied Surface Science, vol. 218, no. 1-4, 2003, pp. 276-281.
[74]K. R. Wu, and T. P. Cho, "Photocatalytic properties of visible-light enabling layered titanium oxide/tin indium oxide films, "Applied Catalysis B: Environmental, vol. 80, no. 3-4, 2008, pp. 313-320.
[75]K. Manthiram, A. P. Alivisatos, "Tunable localized surface plasmon resonances in tungsten oxide nanocrystals", Journal of the American Chemical Society ,vol. 134, no. 9 ,2012, pp. 3995-3998
[76]L. G. Teoh, J. Shieh, W.H. Lai, I. M. Hung, M. H. Hon, "Structure and optical properties of mesoporous tungsten oxide ", Journal of Alloys and Compounds, vol. 396, no.1-2, 2005, pp. 251-254.

[77]J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, Z. L. Wang, "Three-dimensional tungsten oxide nanowire networks", Advanced Materials, vol. 17, 2005, pp. 2107.
[78]L. E. Depero, S. Groppelli, I. N. Sora, L. Sangaletti, G. Sberveglieri, E. Tondello, "Structural Studies of Tungsten-Titanium Oxide Thin Films" J. Solid State Chem., vol. 121, 1996, pp. 379-387.
[79]A. L. Linsebigler, G. Lu, Jr. Yates, T. J., "Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results", Chem. Rev., vol. 95, 1995, pp. 735.
[80]B. Y. Geng, G. Z. Wang, Z. Jiang, T. Xie, S. H. Sun, G.W. Meng, L.D. Zhang, "Synthesis and optical properties of S-doped ZnO nano-wires," Applied Physics Letters, vol. 82, no. 26, 2003, pp. 4791-4793.
[81]K. Huang, Q. Pan, F. Yang, S. Ni and D. He, "The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties," Materials Research Bulletin, vol. 43 no. 4, 2008, pp. 919-925.
[82]林俊誠,氧化鎢奈米線之合成與特性分析,碩士論文,國立台灣科技大學光電工程所,台北市,2009
[83]黃忠良,金屬材料之高溫氧化與腐蝕,台南:復漢出版社,1988,第7-10頁


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊