跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李明哲
研究生(外文):Ming-Zhe Li
論文名稱:氣室表面改質對鋁合金均熱板性能之研究
論文名稱(外文):The Study of Vapor Space Surface Modification on the Performance of Al-alloy Vapor Chamber
指導教授:蘇程裕蘇程裕引用關係
口試委員:黃振康王榮昌
口試日期:2012-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:均熱板鋁合金表面改質
外文關鍵詞:Vapor ChamberAl-alloySurface Modification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
均熱板為一種以熱管為理論基礎的兩相變化熱導冷卻系統,相對於傳統熱管更具有高熱傳量與低熱阻的表現,均熱板的設計可直接與發熱元件貼覆,在目前電子產業的應用上有極大的發展空間。本研究擬利用此熱傳原理,製造一鋁合金均熱板,分析不同表面改質製程及水量多寡對均熱板性能的影響。首先使用濺鍍與電鍍進行腔體內部的銅薄膜改質,並探討水量對性能之影響。藉由研究結果,選擇製作均熱板內部表面改質製程,並針對均熱板性能進行分析量測。
本研究探討表面薄膜對鋁合金均熱板的影響,發現薄膜經過擴散接合後,反應層對熱傳導影響相當大,確實阻隔鋁元素的擴散有助於提升整體效能,於均熱板的熱阻探討中,得到電鍍型均熱板的效率遠大於濺鍍均熱板。於不同注水量的比較方面,注水量為微結構孔隙的100%時有最佳表現,最低熱阻值為0.344℃/W。於熱響應表現方面,電鍍型均熱板熱響應速度大於同尺寸銅塊及鋁塊,甚至大於濺鍍型均熱板。


Vapor Chamber is a kind of heat pipe based on the theory of two-phase change thermal conductivity of the cooling system. Compared with the conventional heat pipe, vapor chamber has a high heat transfer capacity and low thermal resistance performance in cooling. The flat evaporator type could be placed on the heat source directly rather than using saddle. Therefore, the vapor chamber has emerged promising development in the application of electronic industry. In this study, we fabricate the Al-alloy vapor chamber using heat transfer theory. Meanwhile, we investigate the influence of varied surface modification processing and various water contents on the performance of vapor chamber. Firstly, the inner Cu thin film of vapor chamber was modified by using sputtering and electroplating, and further discusses the impact of various water contents on performance. Depending on the results, we could optimize the modification processing and analyze the performance.
In this research, we investigated the effect of thin films on the performance of Al-alloy vapor chamber. We find that the reaction layers strongly affect thermal conductivity after diffusion bonding of films, and it deeply improves the performance by barring Al diffusion. In the discussion of vapor chambers’ thermal resistivity, we find that the cooling efficiency using electroplating is much better than sputtering. Varying the water contents, the results show that the 100% water content injection has the lowest thermal resistance of 0.344 ℃ /W. On the other hand, the vapor chambers using electroplating thermal have speedy thermal response compared with Al bulk and copper bulk, even faster than Cu film sputtered vapor chambers.


摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 iv
表目錄 viii
圖目錄 ix
第一章 、緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 、基本理論與文獻回顧 3
2.1 均熱板工作原理 3
2.1.1 密閉容器 5
2.1.2 工作流體 6
2.1.3 毛細結構 7
2.1.4 均熱板之操作極限 7
2.2 文獻回顧 13
2.3 擴散接合 16
2.4 鋁及鋁合金簡介 20
2.5 濺鍍鍍膜原理 22
2.5.1 濺鍍原理 22
2.5.2 磁控濺鍍 23
2.6 電鍍鍍膜原理 24
2.7 材料性質 27
2.7.1 熱膨脹係數 27
2.7.2 熱傳導係數 28
第三章 、研究方法 29
3.1 實驗流程 29
3.2 銅網規格選擇 30
3.2.1 銅網對均熱板影響 30
3.2.2 收縮率 31
3.2.3 孔隙率 31
3.2.4 滲透率 32
3.3 鋁合金均熱板製作 34
3.3.1 表面處理 34
3.3.2 上蓋 34
3.3.3 下蓋 35
3.3.4 上、下蓋微結構 35
3.3.5 表面改質、接合與注水 36
3.4 性質量測 42
3.4.1 測試設備 42
3.4.2 測試步驟 44
第四章 結果與討論 46
4.1 薄膜性質分析 46
4.1.1 材料對工作流體影響 46
4.1.2 薄膜厚度量測 48
4.2 銅網與薄膜接合分析 49
4.2.1 銅網形貌分析 49
4.2.2 微結構分析 50
4.2.3 EPMA線掃描 52
4.3 均熱板性能 53
4.3.1 熱響應 53
4.3.2 熱源表面溫度對均熱板影響 56
4.3.3 均溫性對均熱板影響 57
4.3.4 傾斜角度對均熱板影響 61
4.3.5 熱阻對均熱板影響 62
4.3.6 均熱板熱影像分析 68
第五章 、結論 71


[1]依日光,熱管技術理論實務,日本技術協會編,台北:復漢出版社,1986。
[2]Gaugler R.S., “Heat Transfer Devices” ,U.S. Patent NO.2350348, 1944.
[3]G. M. Grover, “U.S. Patent NO. 3229759”, 1963.
[4]X. Y. Huang, C. Y. Liu, “The pressure and velocity fields in the wick structure of a localized heated flat plate heat pipe,” International Journal of Heat and Mass Transfer, vol. 39, 1995, pp. 1325-1330.
[5]L. Rosso, N. Koneva, V. Fernicola, “Development of a heat-pipe-based hot plate for surface-temperature measurements,” International Journal of Thermophysics, vol. 30, 2009, pp. 257-264.
[6]簡國詳,「金屬粉體在熱管及平板熱管之應用」,粉體材料在熱管理方面之原理與應用研討會,工業技術研究院,2004, 1-8。
[7]G.P. Peterson, “An Introduction to Heat Pipe,” John Wily and Sons, New York, 1994.
[8]A.F. Mills, “Heat Transfer,” Richard D. Irwin, 1982, pp. 629-688.
[9]M. G. Mwaba, X. Huang, J. Gu, “Influence of wick characteristics on heat pipe performance,” International Journal of Energy Research”, vol. 30, 2006, pp. 489-499.
[10]S.W. Chi, “Heat Pipe Theory and Practice,” McGraw-Hill, New York, 1976.
[11]C. Y. Zhao, W. Lu, S. A. Tassou, “Flow boiling heat transfer in horizontal metal-foam tubes,” Journal of Heat Transfer”, vol. 131, 2009, pp. 1-8.
[12]W. M. Kays, “Convective Heat and Mass Transfer,” McGraw-Hill, New York1966.
[13]B. D. Marcus, “Theory and design of variable conductance heat pipes,“ Report No, NASA CR, 2018, Washington, D. C. April, 1972.
[14]C. Hohmann, P. Stephan, “Microscale temperature measurement at an evaporating liquid meniscus,” Experimental Thermal and Fluid Science, vol. 26 , 2002, pp. 157-162.
[15]J. S. Go, “Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling,” Sensors and Actuators A, vol. 121, 2005, pp. 549-556.
[16]R. Boukhanouf, A. Haddad, M. T. North, C. Buffone, “Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera,” Applied Thermal Engineeringr”, vol. 26, 2006, pp. 2148-2156.
[17]C. Li, G. P. Peterson, Y. Wang, “Evaporation/boiling in thin capillary wicks (I) – wick thickness effects,” Journal of Heat transfer, vol. 128, 2006, pp. 1312-1319.
[18]C. Li, G. P. Peterson, Y. Wang, “Evaporation/boiling in thin capillary wicks (II) – effects of volumetric porosity and mesh size,” Journal of Heat transfer”, vol. 128, 2006, pp. 1320-1328.
[19]S. Lips, F. Lefevre, “Nucleate boiling in a flat grooved heat pipe,” International Journal of thermal science, vol. 48, 2009, pp. 1273-1278.
[20]M. Mastaka, S. Randeep, A. Aliakbar, “Effect of wick characteristics on the thermal performance of the miniature loop heat pipe,” Journal of Heat transfer , vol. 131, 2009, pp. 1-10.
[21]S. C. Wong, Y. H. Kao, “Visualization and performance measurement of operating mesh-wicked heat pipes,” International Journal of Heat and Mass Transfer, vol. 51, 2008, pp. 4249-4259.
[22]J. A. Weibel, S. V. Garimella, M. T. North, “Characterization of evaporation and boiling from sintered powder wicks fed by capillary action,” International Journal of Heat and Mass Transfer”, vol. 53, 2010, pp. 4204-4215.
[23]F. Lefevre, J. B. Conrardy, M. Raynaud, J. Bonjour, “Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure,” Applied Thermal Engineering, vol. 37 , 2012, pp. 95-102.
[24]G.S. Hwang, E. Fleming, B. Carne, S. Sharratt, Y. Nam, P. Dussinger, Y.S. Ju, M. Kaviany, “Multi-artery heat-pipe spreader: Lateral liquid supply,” International Journal of Heat and Mass Transfer”, vol. 54, 2011, pp. 2334-2340.
[25]S. C. Wong, Y. C. Lin, J. H. Liou, “Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes,” International Journal of Heat and Mass Transfer, vol. 53, 2010, pp. 1498-1506.
[26]S. C. Wong, Y. C. Lin, “Effect of copper surface wettability on the evaporation performance: Tests in a flat-plate heat pipe with visualization,” International Journal of Heat and Mass Transfer, vol. 54, 2011, pp. 3921-3926.
[27]S. C. Wong, J. H. Liou, C. W. Chang, “Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes,” International Journal of Heat and Mass Transfer, vol. 53, 2011, pp. 3792-3798.
[28]S. C. Wong, Y. C. Lin, J. H. Liou, “Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone,” International Journal of Thermal Sciences, vol. 52, 2012, pp. 154-160.
[29]S. F. Wang, J. J. Chen, Y. X. Hu, W. Zhang, “Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe,” Applied Thermal Engineering, vol. 31, 2011, pp. 2367-2373.
[30]S. C. Wong, K. C. Hsieh, J. D. Wu, “A novel vapor chamber and its performance,” International Journal of Heat and Mass Transfer, vol. 53, 2010, pp. 2377-2384.
[31]S. C. Wong, S. F. Huang, K. C. Hsieh, “Performance tests on a novel vapor chamber,” Applied Thermal Engineering, vol. 31, 2011, pp. 1757-1762.
[32]J. M. Gerken and W. A. Owczarski, Diffusion Welding,1965, pp.43-52.
[33]寺井清,最新金屬接合技術,台北市,復漢出版社印行,1977,第324-355頁。
[34]蘇貴福,新材料的接合技術,全華科技圖書股份有限公司,台北市,1992。
[35]J. Y. Tsai, C. W. Chang, C. E. Ho, “Microstructure evolution of gold-tin eutectic solder on Cu and Ni substrates, ”Journal of Electronic Materials,vol. 35,2006, pp.65-71.
[36]R. J. Davies, N. Stephenson, “Diffusion bonding and pressure brazing of nimonic 90 Ni-Cr-Co Alloy,” Brit. Welding J, Vol.9, 1962, pp.139-148.
[37]D. V. Donford, P. G. Patridge, “Diffusion bonding of Al-Li alloys, “An Overview Materials Science and Technology, Vol.8, 1992, pp.385-386.
[38]王柏森,矽晶圓與銅基板接合之結構特性研究,碩士論文,國立臺北科技大學,台北市,2010。
[39]張啟運,莊鴻壽,銲焊手冊,機械工業出版社,北京,1998。
[40]小久保定次郎,鋁的表面處理,復漢出版社,台南市,1989。
[41]R. W. Berry, P. M. Hall, M. F. Harris, The Thin Film Technology, New York R. E. Krieger Publications, 1968, p.32.
[42]G. K. Wehner, Advances in Electronic and Electron Physics, vol. 7, New York: Academic Press, 1955, p.239.
[43]張裕祺,表面處理,台北:高立圖書出版社,1993,第2-4頁。
[44]蘇癸陽,實用電鍍理論與實際,台南:復文書局,1990,第52-79頁。
[45]X. Yang, Y. Y. Yan, D. Mullen, “Recent developments of lightweight, high performance high performance heat pipes,” Applied Thermal Engineering”, vol. 33-34, 2012, pp. 1-14.
[46]R. Hata, Composite pipe, process for producing the same, and heat pipe using the same. United States patent, No. 4846264, Jul 11th, 1989.
[47]F. Baehrle, H. Wulf, et al. Heat pipe of aluminium, steel or Gray cast iron. United States patent, No. 4773476, Sep 27th, 1988.
[48]M. P. Mughal, O. A. Plumb, “An experimental study of boiling on a wicked surface,” Journal of Heat Transfer”, vol. 39, 1996, pp. 771-777.
[49]D. T. Queheillalt, G. Carbajal, G. P. Peterson, H. N. G. Wadley, “A multifunctional heat pipe sandwich panel structure,” International Journal of Heat and Mass Transfer”, vol. 51, 2008, pp. 312-326.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top