跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧進德
研究生(外文):Chin-Te Lu
論文名稱:奈米級氧化鋅/氧化鈦熔射塗層光催化特性之研究
論文名稱(外文):Study on Photocatalytic Properties of Nano Structural ZnO/TiO2 Thermal Sprayed Coatings
指導教授:蘇程裕蘇程裕引用關係
口試委員:許正勳程金保
口試日期:2012-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:熔射製程氧化鋅氧化鈦噴霧造粒光催化亞甲基藍
外文關鍵詞:Thermal sprayZinc oxideTitanium dioxideSpray dryPhotocatalysisMethylene blue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光催化係屬於高級氧化程序中的一環,常見的光觸媒材料為TiO2、ZnO、CdS、WO3、SnO2及Fe2O3等,以TiO2與ZnO最為廣泛研究。由於光觸媒材料應用上最大的困難為光觸媒的固定化技術,利用熔膠凝膠法、濺鍍法或燒鍍法較難製備大面積的塗層。本研究係利用電漿與高速火焰熔射技術,分別將ZnO、TiO2、ZnO/3wt%Al2O3及ZnO/50wt%TiO2奈米結構材料噴覆於AISI304不繡鋼基板表面,針對氧化鋅/氧化鈦及其複合粉末利用UV光(352nm)降解亞甲基藍水溶液之光催化特性進行研究。研究結果顯示熔射後塗層表面形貌多為奈米結構,熔射ZnO/3wt%Al2O3之塗層其表面形貌多為奈米片狀(nano disk)氧化鋅,熔射過程發現添加氧化鋁能有效提高氧化鋅塗層堆疊效率;X射線繞射(XRD)分析顯示熔射ZnO/3wt%Al2O3之塗層其特徵峰向右偏移,表示鋁可能有摻雜進氧化鋅結構,高速火焰熔射ZnO/50wt%TiO2塗層其相態多為ZnO 與TiO2之複合相(Zn2Ti3O8及Zn2TiO4),電漿熔射塗層除了複合相外,增加了Ti8O15缺氧相,純TiO2塗層因熔射高溫其Anatase相大都轉變為Rutile相。光催化特性顯示,經UV光照24小時,能將亞甲基藍水溶液降解為透明水溶液,高速火焰熔射TiO2塗層光照12小時降解率為100%,而電漿熔射ZnO/3wt%Al2O3塗層降解效率最差為45%。綜合分析結果顯示,塗層表面結構與光觸媒材料影響光催化降解率,進行降解亞甲基藍水溶液,TiO2塗層較ZnO塗層效率佳,添加氧化鋁於氧化鋅粉末中,能增強熔射時堆疊效率,但經電漿熔射後其光催化效率降低,塗層中產生TiO2缺氧相會因氧空缺形成電子電洞再結合中心,導致其光催化效率較差,高速火焰熔射塗層均較電漿熔射塗層之光催化效果佳。

Among the many photocatalysts, such as TiO2, ZnO, CdS, and WO3, TiO2 and ZnO are known to be the best photocatalyst in terms of its chemical stability. In this study, Nano ZnO, TiO2, ZnO/3wt%Al2O3, and ZnO/50wt%TiO2 photocatalytic coating were deposited on stainless steel 304 by thermal spraying process(APS and HVOF). The photocatalytic properties was evaluated by using methylene blue(MB) aqueous soiution by UV light(352nm). The results showed that the microstructure of ZnO/3wt%Al2O3 coating were nano disk, thermal sprayed powder filled Al2O3 can improve deposition rate; XRD results indicate that phase of TiO2 coating was transformed of anatase to rutile. The phase of HVOF ZnO/50wt%TiO2 coating formed compound phase (Zn2Ti3O8 and Zn2TiO4) and APS ZnO/50wt%TiO2 coating formed Ti8O15. When the HVOF TiO2 coating by UV-illuminated 12 hours, degenerate rate was 98% and APS ZnO/3wt%Al2O3 coating was 46%. The photocatalytic properties of TiO2 coating were higher than others coating (ZnO coating, ZnO/50wt%TiO2 coating and ZnO/3wt%Al2O3 coating). HVOF coating were higher than APS coating.

摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.2.1 研究目的 2
1.2.2 研究內容 2
第二章 文獻回顧 3
2.1 熔射技術原理 3
2.1.1 電漿熔射技術 4
2.1.2 高速火焰熔射 5
2.1.3 熔射材料與應用 6
2.2 光觸媒簡介與應用 7
2.2.1 光觸媒原理 7
2.2.2 光觸媒材料與應用 9
2.2.3 影響光觸媒的因素 10
2.2.3.1 負載金屬的影響 11
2.2.3.2 複合半導體 11
2.2.3.3 粒徑大小的影響 11
2.2.3.4 表面吸附活性的影響 12
2.3熔射原料之製備 12
2.3.1 噴霧造粒技術 12
2.3.2 影響粉末特性的因素 14
2.4 熔射塗層材料 16
2.4.1 奈米材料特性 16
2.4.2 二氧化鈦粉末(TiO2 powder) 18
2.4.3 氧化鋅粉末(ZnO powder) 19
2.4.4氧化鋁粉末(Al2O3 powder) 21
2.4.5 熔射奈米塗層結構 22
2.5 亞甲基藍(Methylene Blue)介紹 23
第三章 實驗方法與步驟 25
3.1 實驗流程 25
3.2 複合粉體製備及燒結 26
3.2.1 實驗粉體原料 26
3.2.2 熔射用複合粉末 28
3.3 熔射塗層之製作 29
3.3.1熔射設備與參數 29
3.3.2 試片前處理 30
3.4分析儀器及原理 31
3.4.1金相與顯微結構觀察 31
3.4.2掃瞄式電子顯微鏡 32
3.4.3 粒徑分析 32
3.4.4 X-ray繞射分析儀 32
3.4.5電子微探針分析儀 33
3.4.6 紫外光/可見光分光光譜儀 33
3.5 光催化實驗 34
3.5.1 光催化實驗設備 34
3.5.2 光催化實驗 35
第四章 結果與討論 37
4.1 熔射粉末分析 37
4.1.1 粉末形貌結構分析 37
4.1.2 燒結參數對粉末相態與結晶尺寸分析 42
4.1.3 粉末相態分析 44
4.2 塗層表面形貌分析 46
4.2.1 ASZo與HSZo表面形貌分析 47
4.2.2 ASZA973與HSZA973表面形貌分析 48
4.2.3 ASZT55與HSZT55表面形貌分析 49
4.2.4 ASTa與HSTa表面形貌分析 50
4.2.5 塗層結構分析 50
4.3 塗層相態分析 52
4.3.1 ASZo與HSZo塗層相態分析 52
4.3.2 ASZA973與HSZA973塗層相態分析 53
4.3.3 ASZT55與HSZT55塗層相態分析 54
4.3.4 ASTa與HSTa塗層相態分析 58
4.4 塗層光學性質分析 59
4.4.1吸收光譜分析 59
4.5 光催化效率分析 62
4.5.1 背景實驗結果 62
4.5.1.1空白實驗 62
4.5.1.2直接光照實驗 63
4.5.2 吸附反應與光催化實驗 64
4.5.3 熔射塗層表面結構對光催化性質之影響 68
4.5.4 光學特性對光催化性質之影響 68
4.5.5 熔射塗層相態對光催化性質之影響 69
第五章 結論 70
參考文獻 71



[1]A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” nature, vol. 238, 1972, pp. 37-38.
[2]S. L. Kuo and C. J. Liao, “Photocatalytic disinfection of bacteria by sodium light with smectite catalysts,” Water Quality Research Journal of Canada 41, vol. 4, 2006, pp. 365-374.
[3]田中義身,光觸媒技術研討會,經濟部,2000。
[4]Z. Zhang, C. C. Wang, R. Zakria and J. Y. Ying, “Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts,” Journal of Physical Chemistry B, vol. 102, 1998, pp. 10871-10878.
[5]立天時代股份有限公司,台北,網址:http://www.arc-flash.com.tw/。
[6]S. B. Mishra, S. Prakash and K. Chandra, “Studies on erosion behavior of plasma sprayed coatings on a Ni-based superalloy,” Wear, vol. 260, 2000, pp. 422-432.
[7]W. A. Saywell, “Thermal Spray Industry Continues to Develop,” Metal Powder Report, vol. 51, 1996, pp. 34-37.
[8]Y. Zeng. G. F. Cheng, M. Wen and W. Wu, “Effect of external bias voltage and coating thickness on the photocatalytic activity of thermal sprayed TiO2 coating,” Progress in Organic Coatings, vol. 61, 2008, pp. 321-325.
[9]H. Chen, S. W. Lee, T. H. Kim and B. Y. Hur, “Photocatalytic decomposition of benzene with plasmas prayed TiO2-based coatings on foamed aluminum,” Journal of the European Ceramic Society, vol. 26, 2006, pp. 2231-2239.


[10]G. J. Yang, C.J. Li, F. Han and A. Ohmori, “Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings,” Thin Solid Films, vol. 466, 2004, pp. 81-85.
[11]C. Lee, H. Choi, C. Lee and H. Kim, “Photocatalytic properties of nano-structured TiO2 plasma sprayed coating,” Surface & Coatings Technology, vol. 173, 2003, pp. 192-200.
[12]賴信穎,二氧化鈦添加氫氧基磷灰石對水中污染物光分解之效應,碩士論文,成功大學,台南,2007。
[13]J. He, M. Ice, S. Dallek and E. J. Lavernia, “Synthesis of Nanostructured WC-12 Pet Co Coating Using Mechanical Milling and High Velocity Oxygen Fuel Thermal Spraying,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 31, 2000, pp. 541-553.
[14]B. S. Schorr, K. J. Stein and A. R. Marder, “Characterization of Thermal Spray Coatings,” Materials Characterization, vol. 42, 1999, pp. 93-100.
[15]蕭威典,熔射覆膜技術,全華科技圖書,2006。
[16]L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, New York: John Wiley & Sons, 1995, pp.79-82.
[17]E. Pfender, “Fundamental Studies Associated with the Plasma Spray Process,” Proceedings of the National Thermal Spray Conference, 1987, pp. 1-10.
[18]S. Steinhäuser, B. Wielage, U. Hofmann, T. Schnick, A. Ilyuschenko and T. Azarova, “Plasma-sprayed wear-resistant coatings with respect to ecological aspects,” Surface & Coatings Technology, Vol. 131, 2000, pp. 365-371.
[19]E. Dongmo , M. Wenzelburger and R. Gadow, “Analysis and optimization of the HVOF process by combined experimental and numerical approaches,” Surface & Coatings Technology, vol. 202, 2008, pp. 4470-4478.
[20]王海軍,熱噴塗材料及應用,國防工業出版社,2008。
[21]A. Fujishima, T. N. Rao and D. A. Tryk, “Titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol 1, 2000, pp. 1-21.
[22]李佳欣,二氧化鈦粉體表面吸附鎳之改質研究,碩士論文,逢甲大學,台中,2006。
[23]F. L. Toma, G. Bertrand, S. O. Chwa, D. Klein, H. Liao, C. Meunier and C. Coddet, “Microstructure and photocatalytic properties of nanostructured TiO2 and TiO2–Al coatings elaborated by HVOF spraying for the nitrogen oxides removal,” Materials Science and Engineering, vol. 417, 2006, PP. 56-62.
[24]Y. C. Nah, I. Paramasivam, and P. Schmuki, “Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications,” ChemPhysChem, vol. 11, 2010, pp. 2698-2713.
[25]彭依偉,活性碳紙纖濾網塗覆奈米光觸媒分解丙酮之研究,碩士論文,中山大學,台南 ,2008。
[26]林桂芬,溶膠凝膠法製備高比表面積二氧化鈦光觸媒及其性質分析,碩士論文,台北科技大學,台北,2005。
[27]M. Bizarro, A. S.Arzate, I. G. Wilches, J.C. Alonso and A. Ortiz, “Synthesis and characterization of ZnO and ZnO:Al by spray pyrolysis with high photocatalytic properties”, Catalysis Today, vol. 166, 2011, pp. 129–134.
[28]A. Kafizas, S. Kellici, J. A. Darr, I. P. Parkin, “Titanium dioxide and composite metal/metal oxide titania thin films on glass: A comparative study of photocatalytic activity,” Journal of Photochemistry and Photobiology A: Chemistry, vol.204, 2009, pp. 183–190.


[29]P. Pawinrat, O. Mekasuwandumrong and J. Panpranot, “Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes,” Catalysis Communications, vol, 10, 2009, PP. 1380–1385.
[30]陳皇翰,利用可見光探討銀沉積於奈米氧化鋅的光催化活性,碩士論文,成功大學,台南,2005。
[31]曾展晧,以貴金屬奈米粒子-氧化鋅奈米柱複合光觸媒分解甲基橙之研究,碩士論文,成功大學,台南,2005。
[32]H. Y. Zhu, R. Jiang, Y.Q. Fu, Y.J. Guan, J. Yao, L. Xiao and G.M. Zeng, “Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation,” Desalination, vol. 286, 2012, pp. 41–48.
[33]F. Ye and A. Ohmori, “The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings,” Surface & Coatings Technology, vol. 160, 2002, pp. 62-67.
[34]A. Bojinova, R. Kralchevska, I. Poulios and C. Dushkin, “Anatase/Rutile TiO2 composites: Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry,” Materials Chemistry and Physics, vol. 106, 2007, pp. 187-192.
[35]F. X. Ye, A. Ohmori, T. Tsumura, K. Nakata and C. J. Li, “Microstructural Analysis and Photocatalytic Activity of Plasma-Sprayed Titania-Hydroxyapatite Coatings,” Journal of Thermal Spray Technology, vol, 16, 2007, pp. 776–782.
[36]傅冠中,微/奈米氧化鋁/氧化鈦熔射塗層之噴覆與特性研究,碩士論文,台北科技大學,台北,2010 。
[37]曾令可,陶瓷工業實用乾燥技術與實例,北京,化學工業出版社,2008。
[38]李嘉甄,陶瓷製程特論,台北科技大學材料所,2010。
[39]章登宏,噴霧造粒因素對粉體顆粒形成的影響,中國陶瓷, 第三十六卷,第六期,2000,第7-9頁。
[40]張建新,等離子噴塗納米結構Al2O3-13%TiO2塗層組織及性能研究,博士論文,河北工業大學,河北,2007。
[41]F. Iskandar, L. Gradon and K. Okuyam, “Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol,” Journal of Colloid and Interface Science, vol. 265, 2003, pp. 296-303.
[42]J. W. Walker, J. S. Reed and S. K. Verma, “Influence of Slurry Parameters on the Characteristics of Spray-Dried Granules,” Journal of the American Ceramic Society, vol. 82, 1999, pp. 1711-1719.
[43]C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht and M. A. El-Sayed, “Some properties of spherical and rod-shaped semiconductor and metal nanocrystals,” Pure and Applied Chemistry, Vol. 74, 2002, PP. 1675-1692.
[44]P. Ball, and L. Garwin, “Science at the atomic scale,” Nature, vol. 355, 1992, pp. 761-766.
[45]A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, 1996, pp. 933-937.
[46]R. Rossetti, S. Nakahara and L. E. Brus, “Quantum size effect in the redox potentials resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” Journal of Chemical Physics, Vol. 79, 1983, pp. 1086-1088.
[47]J. Y. Kim, C. S. Kim, H. K. Chang and T. O. Kim, “Effects of ZrO2 addition on phase stability and photocatalytic activity of ZrO2/TiO2 nanoparticles,” Advanced Powder Technology, vol. 21, 2010, pp. 141-144.

[48]莊家評,二氧化鈦的表面修飾及其在染料敏化太陽能電池的應用,碩士論文,成功大學,台南,2008。
[49]彭湘育,二氧化鈦的改質及可見光光催化反應與染料敏化太陽能電池的應用,碩士論文,台北科技大學,台北,2010。
[50]Y. Zeng, J. T. Liu, W. Wei, J. R. Wang and S. W. Lee, “Photocatalytic performance and microstructure of thermal-sprayed nanostructured TiO2 coatings,” Ceramics International, vol. 34, 2008, pp. 351-357.
[51]M. Bozorgtabar, M. Rahimipour and M. Salehi, “Novel photocatalytic TiO2 coatings produced by HVOF thermal spraying process,” Materials Letters, vol. 64, 2010, pp. 1173-1175.
[52]G. J. Yang, C. J. Li, Y. Y. Wang and C. X. Li, “Dominant microstructural feature over photocatalytic activity of high velocity oxy-fuel sprayed TiO2 coating,” Surface & Coatings Technology, vol. 202, 2007, pp. 63-68.
[53]J. Colmenares-Angulo, S. Zhao, C. Young and A. Orlov, “The effects of thermal spray technique and post-deposition treatment on the photocatalytic activity of TiO2 coatings,”Surface & Coatings Technology, vol. 204, 2009, pp. 423-427.
[54]N. Kaneva, I. Stambolova, V. Blaskov, Y. Dimitriev, S. Vassilev and C. Dushkin, “Photocatalytic activity of nanostructured ZnO films prepared by two different methods for the photoinitiated decolorization of malachite green,” Journal of Alloys and Compounds, vol. 500, 2010, pp. 252-258.
[55]M. Fassier, N. Chouard, C. S. Peyratout, D. S. Smith, H. Riegler, D. G. Kurth , C. Ducroquetz and M. A. Bruneaux, “Photocatalytic activity of oxide coatings on fired clay substrates,” Journal of the European Ceramic Society, vol. 29, 2009, pp. 565-570.

[56]曾士誠,礦化劑對於水熱法成長氧化鋅奈米桿之影響,碩士論文,台灣科技大學,台北,2009。
[57]J. J. Duan, X. H. Liu, Q. F. Han and X. Wang, “Controlled morphologies and optical properties of ZnO films and their photocatalytic activities,” Journal of Alloys and Compounds, vol. 509, 2011, pp. 9255-9263.
[58]C. F. Klingshirn, “ZnO: Material, physics and applications,” ChemPhysChem, vol. 8, 2007, pp. 782-803.
[59]蔡忠育,氧化鋅薄膜之製備與特性分析,碩士論文,台北科技大學,台北,2009。
[60]D. Li and H. Haneda, “Morphologies of zinc oxide particles and their effects on photocatalysis,” Chemosphere, vol. 51, 2003, pp. 129-137.
[61]J. Rodríguez , F. Paraguay-Delgado, A. López, Julio Alarcón and W. Estrada, “Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water,” Thin Solid Films, vol. 519, 2010, pp. 729-735.
[62]M. Tului, F. Arezzo, L. Pawlowski, “Optical properties of plasma sprayed ZnO+Al2O3 coatings,” Surface & Coatings Technology, vol. 179, 2004, pp. 47-55.
[63]林士凱,製程參數對水熱法製造氧化鋁粉末之影響,碩士論文,中華科技大學,台北,2010。
[64]汪建民,陶瓷技術手冊(下),中華民國產業科技發展協進會,中華民國粉末冶金協會,1996。
[65]K. Ramachandran, V. Selvarajan and K. P. Screekumar, “Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina-titania coatings,” Thin Solid Films, vol. 315, 1998, pp. 144-151.
[66]D. Goberman, Y H. Sohn and L. Shaw, “Microstructure development of Al2O3-13wt.%TiO2 plasma sprayed coatings derived from nanocrystalline powders,” Acta Materialia, vol. 50, 2002, pp. 1141-1152.
[67]S. Pyne, G. P. Sahoo, D. K. Bhui, H. Bar, P. Sarkar, S. Samanta, A. Maity and A. Misra, “Enhanced photocatalytic activity of metal coated ZnO nanowires,” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 93, 2012, pp. 100-105.
[68]高雄醫學大學附設中和紀念醫院臨床醫學研究所,高雄,網址:http://www.kmuh.org.tw/www/clireser/。
[69]C. Y. Su, K. H. Liao, C. T. Pan and P. W. Peng, “The effect of deposition parameters and post treatment on the electrical properties of Mo thin films,” Thin Solid Films, vol. 520, 2012, pp. 5936-5939.
[70]陳建林,「鋁摻雜對ZnO׃Al薄膜结晶性能與微觀組織的影響」,中國有色金屬學報,第十九卷,第七期,2009,第1284-1288頁。
[71]黃彥霖,射頻磁控濺鍍法沉積鈦酸鋅薄膜的顯微結構與相變化,碩士論文,屏東科技大學,屏東,2008。
[72]J. Yang and J. H. Swisher, “The Phase Stability of Zn2Ti308,” Materials Characterization, vol. 37, 1996, pp. 153-159.
[73]黃千鳴,銳鈦礦二氧化鈦的光催化活性受氧空缺存在以及機械應變影響之理論分析與模擬,碩士論文,臺灣大學,台北,2010。
[74]劉守靜,研究奈米光觸媒之合成及處理染料之效率及降解機構,碩士論文,中山醫學大學,台中,2008。
[75]P. H. Chen and C. H. Jenq, “Kinetics of photocatalytic oxidation of trace organic compounds over titanium dioxide,” Environment International, vol. 24, 1999, pp. 871-879.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊