( 您好!臺灣時間:2021/08/03 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Chun-Jung Chiu
論文名稱(外文):Optimal Ordering For Time-Limited Goods–Empirical Rule For Import Dairy Products
外文關鍵詞:Newsboy theoryOptimal order quantityValidity management
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將參考報童理論,配合實務上所能達到作法,目的為如何決定時效性商品的最適訂購模式,本文為進口商品為例: 其Lead time(此為出貨時間) 必須為訂購限制,處理各種不同時效性商品的訂購。同時在考量各種不同參數( 貨櫃空間限制、最小訂購量、商品有效期限、效期管理、平均銷售…),求解出最適訂購量,若過程已知該訂購量無法於時效前出售完畢,該如何使其損失最小化,銷售最大化為本為重點。

Based on practical experience, timeliness is very critical for most of issues. It would cause insufficiency of enterprise operation sales if not effectively controlling ordering quantity and re-stock timing; it would also cause increasing loss when commodities needs to be destroyed or cleaned by reduced price if commodities are having timeliness issue; last but not the least, insufficient stock would cause sales decrease, customers complain, re-purchase ratio drops and even losing customers in a long term of perspective.
In this study, it will determine the optimal ordering model under the best timeliness by referring to the newsboy theory and corporate with practical achievable practices. By taking imported commodities as instance, It will reveal the best ordering model – lead time (as time duration for suppliers to receive orders to ship them out) must be within ordering limitation, combined orders with different commodities that have different length of expiration date, and considerations of other variables (such as: container space limitation, minimum order quantities, commodities’ validity management, average sales and so on…). In this study, it will also focus on minimize the lost if it is known that ordering quantities cannot be sold before reaching its expiration date.

摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 研究假設與限制 5
1.4 研究流程 5
第二章 文獻探討 6
2.1 易腐性商品問題之發展 6
2.2 報童理論 7
2.3 產品需求分配 15
2.4 商品定價策略 17
2.5 商品定價策略多階存貨模型 18
2.6 小結 18
第三章 研究方法 20
3.1 符號定義 20
3.2 經驗法則 21
3.3 模式求解步驟 24
第四章 研究結果 25
4.1 個案情境 25
4.2 個案計算 30
第五章 結論與建議 40
5.1 研究結論 40
5.2 研究建議 41
參考文獻 42

Silver, E.A., Pyke, D.F., and Peterson, R.P., Inventory management and production planning and scheduling(3rd ed.), New York: John Wiley, 1998.
Silver, E.A., and Peterson, R., Decision Systems for Inventory Management and Production Planning, New York: John Wiley, 1979.
Abad, P.L., “Optimal lot size for a perishable good under conditions of finite production and partial backordering and lost sale,” Computers and Industrial Engineering, vol.38, no. 4, 2000, pp. 457-465.
Adachi, Y., Nose, T.m and Kuriyama, S., “Optimal inventory control policy subject to different selling prices of perishable commodities,” International Journal of Production Economics, vol.60-61, no. 1, 1999, pp. 389-394.
Alfares, H.K., and Elmorra, H.H., “The distribution-free newsboy problem: extensions to the shortage penalty case,” International Journal of Production Economics, vol.93-94, no. 1, 2005, pp. 465-477.
Anjos, M.F., Cheng, R.C.H., and Currie, C.S.M., “Optimal pricing policies for perishable products,” European Journal of Operational Research, vol.166, no. 1, 2005 ,pp. 246-254.
Balkhi, Z.T., “On the global solution to an integrated inventory system with general time varying demand, production and deterioration rates,” European Journal of Operational Research, vol.114, no. 1, 1999, pp.29-37.
Bitran, G. R., and Mondschein, S.V., “Periodic pricing of seasonal products in retailing,” Management Science, vol.43, no. 1, 1997, pp. 64-79.
Bose, S., Goswami, A., and Ghaudhuri, K.S., “An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting,” The Journal of the Operational Research Society, vol.46, no. 6, 1995, pp. 771-782.
Buckley, J.J., “Possibility and necessity in optimization,” Fuzzy Sets and Systems, vol.25, no. 1, 1988, pp.1-13.
Burnetas, A.N., and Smith, C.E., ”Adaptive ordering and pricing for perishable products,” Operations Research, vol.48, no. 3, 2000, pp. 436-443.
Casimir, R. J.,” Strategies for a blind newsboy,” Omega, vol.27, no. 1, 1999, pp. 129-134.
Chang, H.J., and Dye, C.Y., “An EOQ model for deteriorating items with time varying demand and partial backlogging,” Journal of the Operational Research Society, vol.50, no. 11,1999, pp. 1176-1182.
Chen, L.H., and Chen, Y.C., “A newsboy problem with a simple reservation arrangement,” Computers and Industrial Engineering, vol.56, no. 1, 2009, pp. 157-160.
Chien, T.W., “Determining profit-maximizing production shipping polices in one-to-one direct shipping, stochastic demand environment,” European Journal of Operational Research, vol. 64, no. 1, 1993, pp.83-102.
Chun, Y. H., “Optimal pricing and ordering policies for perishable commodities,” European Journal of Operational Research, vol.144, no. 1, 2003, pp. 68-82.
Diane, J. R., “A high-low search algorithm for a newsboy problem with delayed information feedback,” Operations Research, vol.38, no. 5, 1990, pp. 838-846.
Dutta, P., Chakraborty, D. and Roy, A. R., “A single-period inventory model with fuzzy random variable demand,” Mathematical and computer modeling, vol.41, no. 8-9,2005,pp. 915-922.
Dye, C.Y., and Ouyang, L.Y., ”An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging,” European Journal of Operational Research, vol.163, no. 3, 2005, pp. 776-783.
Feng, Y., and Gallego, G., “Optimal starting times for end-of-season sales and optimal stopping times for promotional fares,” Management Science, vol.41, no. 8, 1995, pp.1371-1391.
Ferguson, M., Jayaraman, V., and Souza, G.C., “Note: An application of the EOQ model with nonlinear holding cost to inventory management of perishables,” European Journal of Operational Research, vol.180, no.1, 2007,pp. 485-490.
George, L.V. “Robust multi-item newsboy model with a budget constraint,” International Journal of Production Economics, vol.66, no. 3, 2000, pp.213-226.
Giri, B.C., and Chaudhuri, K.S., “Deterministic models of perishable inventory with stock-dependent demand rate and nonlinear holding cost,” European Journal of Operational Research, vol.105, no. 3,1998,pp. 467-474.
Goyal, S.K., and Giri, B.C., “Recent trends in modeling of deteriorating inventory,” European Journal of Operational Research, vol.134, no. 1, 2001, pp. 1-16.
Ji, X., and Shao, Z., ”Model and algorithm for bi-level newsboy problem with fuzzy demands and discounts,” Applied mathematics and computation, vol.172,no. 1,2006,pp. 163-174.
Jucker, J.V., and Rosenblatt, M.J., “Single-period inventory models with demand uncertainty and quantity discounts: behavioral implications and a new solution procedure,” Naval Research Logistics, vol. 32, no. 4,1985, pp.537-550.
Katagiri, H., Ishii, H., and Sakawa, M., “An inventory problem with a perishable commodity and a nonperishable one,” Asia Pacific Management Review, vol.8, no. 4, 2003,pp. 499-507.
Khouja, M., “Optimal ordering, discounting and pricing in the single-period problem,” International Journal of Production Economics, vol. 65, no. 2, 2000, pp.201-216.
Khouja, M., “The single-period (news-vendor) problem: literature review and suggestions for future research,” OMEGA, vol.27, no. 5, 1999, pp.537-553.
Khouja, M., ”The newsboy problem under progressive multiple discounts. European Journal of Operational Research, vol.84, no. 2, 1995, pp. 458-466.
Khouja, M., and Mehrez, A., “A multi-product constrained newsboy problem with progressive multiple discounts,” Computers and Industrial Enginnering, vol. 30, no. 1, 1996, pp. 95-101.
Lau, A.H.L. and Lau, H.S., “The newsboy problem with price-dependent demend distribution,” IIE Transaction, vol.20, no. 2, 1988, pp.168-175.
Lau, A.H.L. and Lau, H.S., ”The effects of reducing demand uncertainty in a manufacturer-retailer channel for single-period products,” Computers and Operations Research, vol.29, no. 11,2002 ,pp. 1583-1602.
Lau, H., “The multi-product multi-constraint newsboy problem: Applications, formulation and solution,” Journal of Operations Management, vol.13, no. 2, 1995,pp.153-162.
Lau, H.S., “Simple formulas for the expected costs in the newsboy problem: an educational note,” European Journal of Operational Research, vol.100, no. 3,1997, pp.557-561.
Lau, H.S., and Lau, A.H.L., “The multi-product multi-constraint newsboy problem: Applications formulation and solution,” Journal of Operations Management, vol.13, No. 2, 1995 ,pp.153-162
Liao, H., Tsai, C., and Su, C., “An inventory model with deteriorating items under inflation when a delay in payment is permissible,” International Journal of Production Economics, vol.63, no. 2, 2000, pp. 207-214.
Lin, C.S., and Kroll, D.E., “The single -item newsboy problem with dual performance measures and quantity discounts,” European Journal of Operational Research, vol.100, no. 3,1997, pp.562-565.
Lu, H.F., “A fuzzy newsvendor problem with hybrid data of demand,” Journal of the Chinese Institute of Industrial Engineers, vol.25, no. 6,2008 ,pp. 472-480.
Moon, I., and Choi S., “The Distribution Free Newsboy Problem with balking,” Journal of Operational Research Society, vol.46, no. 4, 1995, pp.537-54.
Ouyang, L., Wu, K., and Yang, C., ”A study on an inventory model for on-instantaneous deteriorating items with permissible delay in payments,” Computers and Industrial Engineering, vol.51, no. 4, 2006, pp. 637-651.
Padmanabhan, G., and Vrat, P., “EOQ models for perishable items under stock dependent selling rate,” European Journal of Operational Research, vol.86, no. 2, 1995,pp. 281-292.
Petrovic, D., Petrovic, R., and Vujosevic, M., “Fuzzy models for the newsboy problem,” International Journal of Production Economics, vol.45, no. 1-3, 1996, pp.435-441.
Raafat, F., ”Survey of literature on continuously deteriorating inventory models,” The Journal of the Operational Research Society, vol.42, no. 1,1991 ,pp. 27-37.
Reyniers, D., “A High-Low Search Algorithm for a Newsboy Problem with Delayed Information Feedback,” Operational Research Quarterly, vol.38, no. 5, 1991, pp.838-846.
Rogers, D., and Tsubakitani, S., “Newsboy-style results for multi-echelon inventory problems backorders optimization with intermediate delays,” Journal of Operational Research Society, vol.42, no. 1, 1991, pp.57-68.
Serel, D.A., “Inventory and pricing decisions in a single-period problem involving risky supply,” International Journal of Production Economics, vol.116, no. 1, 2008, pp. 115-128.
Shore, H., ”General approximate solutions for some common inventory models,” Journal of the Operational Research Society, vol.37, no. 6, 1986, pp.619-629.
Vairaktarakis, G. L., “Robust multi-item newsboy models with a budget constraint,” International Journal of Production Economics, vol.66, no. 3, 2000, pp.213-226.
Walker, J., ”The single-period inventory problem with triangular demand distribution,” Journal of Operation Research Society, vol.44, no. 7, 1993, pp. 725-731.
Wee, H.M., “A deterministic lot-size inventory model for deteriorating items with shortages and a declining market,” Computers and Operations Research, vol.22, no. 3, 1995, pp. 345-356.
Weiss, H., “Economic order quantity models with nonlinear holding costs,” European Journal of Operational Research, vol.9, no. 1, 1982,pp. 56-60.
Wu, J.W., Lin, C., Tan, B., and Lee, W.C., “An EOQ inventory model with ramp type demand rate for items with weibull deterioration,” Information and Management Sciences, vol.10, no. 3, 1999 ,pp. 41-51.
Yang, P.C. and Wee, H.M., “A single-vendor and multiple-buyers production-inventory policy for a deteriorating item,” European Journal of Operational Research, vol.143, no. 3,2002, pp.570-581.

第一頁 上一頁 下一頁 最後一頁 top
1. 歐陽良裕、楊志德,「生產率與存貨水準有關且需求率為價格的函數之退化性產品的生產存貨模式」,管理研究學報,第4卷,第2期,2004,第311-335頁。
2. 黃惠民、鄧貴中,「韋伯分配型損耗性產品在儲存場地及存貨投資金額限制條件下之最佳生產及訂價策略」,中原學報,第24卷,第1期,1996,第61-66頁。
3. 黃惠民、吳玫瑩與周宗翰,「損耗性商品之整合性二階存貨模式」,中原學報,第29卷,第1期,2001,第77-86頁。
4. 黃惠民、方翠瑩與陳維南,「產銷通路整合下含有不良品的報童問題之訂購策略」,品質學報,第14卷,第1期,2007,第17-30頁。
5. 黃允成、陳貞秀,「有效期限內多階段訂購報童模式最適決策之研究」,管理學報,第21卷,第3期,2004,第345-362頁。
6. 黃允成,「機率性需求存貨模式最佳訂購量及安全存量水準之研究」,交大管理學報,第16卷,第2期,1996,第19-36頁。
7. 李智明、李建宏,「不同需求分配和資訊狀況下報童問題」,管理研究學報,第7卷,第1期,2007,第91-118頁。
8. 黃允成,「報童模式在間斷性機率需求型態下若干特性之探討」,管理研究學報,第2卷,第1期,2002,第161-172頁。
9. 李智明,「需求不確定性對單期季節性商品完全資訊期望價值之影響」,台大管理論叢,第12卷,第1期,2001,第229-248頁。