跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳政偉
研究生(外文):Cheng-Wei Chen
論文名稱:以有限元素法探討步態站立期間足底筋膜之生物力學行為
論文名稱(外文):The Biomechanical Behavior of Plantar Fascia during Stance Phase of Gait Cycle - A Finite Element Analysis
指導教授:陳文斌陳文斌引用關係鄧復旦鄧復旦引用關係
指導教授(外文):Weng-Pin ChenFuk-Tan Tang
口試委員:許智欽呂東武
口試委員(外文):Chih-Chin HsuTung-Wu Lu
口試日期:2011-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:足底筋膜炎步態站立期絞盤效應有限元素分析
外文關鍵詞:Plantar fasciaGaitWindlass mechanismFinite element analysis
相關次數:
  • 被引用被引用:4
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
足底筋膜是維持足弓穩定的重要組織,並提供足部所需的彈性,藉以消散活動時必須承載的衝擊能量。不正常負載或是重覆損傷可能導致足底筋膜炎的形成。根據過去的相關體外實驗可以發現在步態站立期間,足底筋膜上主要有兩個負載因素,其一為足部平貼期後自身重量承載;另一為足跟離地後期趾骨牽引足底筋膜產生的絞盤效應所導致。然而,該類研究結果僅為探討足底筋膜整體之受力,無法確切了解步態站立期間足底筋膜各區域承受負載的變化。因此,本研究以動態有限元素分析之方式,探討足底筋膜在步態站立期間的生物力學行為,以及其對於足部生物力學的影響。
本研究建立含完整足底筋膜之三維六面體有限元素足底模型,改善過去相關研究以樑元素代替足底筋膜的缺點,並給予其非線性之材料設定,使分析更接近實際的組織特性。此外,以本實驗室自行開發的軟組織力量位移探測裝置配合超音波影像系統,量測足底軟組織的機械性質,以提供有限元素模型更完整的材料參數。邊界條件的部分,則依據一般步行速度下步態實驗所獲得的運動學參數,作為有限元素分析之設定。
研究結果顯示,步態站立期間足底筋膜上負載分佈情形,後期足部推進階段受絞盤效應影響於足底筋膜與跟骨連接處,產生張力負載峰值1082.4N,且von Mises 應力分佈由內至外分別為15.58MPa 15.0 及11.42MPa,與臨床上常見發生足底筋膜炎位置相符。此研究分析結果,經過步態實驗之光球軌跡、地板反作用力及足壓實驗的驗證,可提供作為臨床治療足底筋膜炎以生物力學運動控制為治療策略的重要量化參考資訊。

The plantar fascia is an important soft tissue for stabilization of the foot arch. It can provide the flexibility to dissipate impact energy during gait cycle. Abnormal load or repeated injuries are the possible factors for plantar fasciitis. According to previous in vitro studies, there are two major loading factors causing plantar fasciitis during gait cycle. One is the weight-bearing load following the mid-stance phase of gait. The other is the windlass effect caused by phalanges winding the plantar fascia during heel rise and terminal period of gait. Although the loading on the plantar fascia during gait cycle
was revealed in previous in vitro study, it didn’t describe the magnitude and position of the loads applied on the plantar fascia. Therefore, the aim of the current study was to use dynamic finite element analysis to investigate the biomechanical behavior of the plantar fascia during stance phase of gait cycle, and it’s biomechanical effect on the
foot.
This study established a three-dimensional finite element foot model with complete plantar fascia structure, and the non-linear material properties of the soft tissues were
considered. This model was better than the models created in previous literature which used simple truss element to represent the plantar fascia. In addition, an in-house
material testing machine which integrated with ultrasonic graphic system was used to determine the material property of plantar soft tissue. The use of these non-linear
material properties could increase the accuracy of the simulation results. The loading and boundary conditions for the finite element analysis of the foot were adopted from the kinematic and kinetic data obtained from gait analysis.
The force and stress distributions on the plantar fascia during stance phase were obtained from the dynamic finite element analysis. Because of the windlass effect, a
tension force of 1082.4N was found near the junction of plantar fascia and calcaneus during push off. The peak von Mises stress distributions of plantar fascia were
15.58MPa, 15.0MPa and 11.42MPa from medial to lateral aspects of the foot, respectively. The location of the stress concentration on the plantar fascia was consistent with the commonly found locations of plantar fasciitis. The results of this study were validated by comparing the experimental kinematic data, ground reaction force, and plantar pressure distributions. These quantitative data can provide reference for clinicians who treat plantar fasciitis with the strategy of using biomechanical control on the footwear.

摘 要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究背景與相關文獻回顧 2
1.2.1 足部結構 2
1.2.2 足底筋膜(plantar fascia) 4
1.2.3 步態週期之運動行為 7
1.2.4 足部之絞盤機轉(windlass mechanism) 10
1.2.5 足底筋膜炎之要素 13
1.2.6 有限元素方法之生物力學評估 14
1.2.7 文獻總結 20
1.3 研究目的 22
第二章 材料與方法 23
2.1 研究流程 23
2.2 足部模型之建立 25
2.3 邊界條件 28
2.3.1 步態運動學參數 28
2.3.2 有限元素分析軟體設定 33
2.4 材料參數 38
2.4.1 足底筋膜材料參數設定 39
2.4.2 軟組織材料參數設定 42
2.5 接觸問題 45
2.6 有限元素分析足壓驗證 46
第三章 結果 47
3.1 分析結果驗證 47
3.1.1 運動學驗證 47
3.1.2 力動學驗證 51
3.1.3 數值分析收斂驗證 55
3.2 步態站立期足部結構之運動 56
3.2.1 足弓結構 56
3.2.2 足底筋膜結構 57
3.3 步態站立期足部內結構生物力學行為 59
3.3.1 足底筋膜 59
3.3.2 骨頭下方軟組織應力分佈 63
3.3.3 骨頭間負載 65
第四章 討論 67
4.1 有限元素分析與實驗之驗證比較 67
4.1.1 步態站立期間足部之運動 67
4.1.2 步態站立期間足部運動之力學響應 68
4.2 步態期間足底筋膜之生物力學探討 72
4.3 有限元素分析限制 76
第五章 結論 78
參考文獻 79
作者簡介 84


[1]M. Nordin and H. F. Victor, Basic Biomechanics of the Musculoskeletal System, Third ed., 2001.
[2]A. Aquino and C. Payne, "Function of the plantar fascia", The Foot, vol. 9, 1999, pp. 73-78.
[3]D. G. Wright and D. C. Rennels, "A Study of the Elastic Properties of Plantar Fascia", Journal of Bone and Joint Surgery, vol. 46, 1964, pp. 482-492.
[4]H. B. Kitaoka, Z. P. Luo, E. S. Growney, L. J. Berglund and K. N. An, "Material properties of the plantar aponeurosis", Foot & Ankle International, vol. 15, 1994, pp. 557-560.
[5]R. A. Clark, A. Franklyn-Miller, E. Falvey, A. L. Bryant, S. Bartold and P. McCrory, "Assessment of mechanical strain in the intact plantar fascia", The Foot, vol. 19, 2009, pp. 161-164.
[6]R. F. Ker, M. B. Bennett, S. R. Bibby, R. C. Kester and R. M. Alexander, "The spring in the arch of the human foot", Nature, vol. 325, 1987, pp. 147-149.
[7]C. K. Huang, H. B. Kitaoka, K. N. An and E. Y. Chao, "Biomechanical evaluation of longitudinal arch stability", Foot Ankle, vol. 14, 1993, pp. 353-357.
[8]K. M. Quapp and J. A. Weiss, "Material characterization of human medial collateral ligament", Journal of Biomechanical Engineering, vol. 120, 1998, pp. 757-763.
[9]A. N. Natali, P. G. Pavan and C. Stecco, "A constitutive model for the mechanical characterization of the plantar fascia", Connective Tissue Research, vol. 51, 2010, pp. 337-346.
[10]J. Perry and J. M. Burnfield, GAIT ANALYSIS - Normal and Pathological Function, Second ed., 2010.
[11]A. Kappel-Bargas, R. D. Woolf, M. W. Cornwall and T. G. McPoil, "The windlass mechanism during normal walking and passive first metatarsalphalangeal joint extension", Clinical Biomechanics, vol. 13, 1998, pp. 190-194.
[12]M. C. Carson, M. E. Harrington, N. Thompson, J. J. O''Connor and T. N. Theologis, "Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis", Journal of Biomechanics, vol. 34, 2001, pp. 1299-1307.
[13]B. A. MacWilliams, M. Cowley and D. E. Nicholson, "Foot kinematics and kinetics during adolescent gait", Gait & Posture, vol. 17, 2003, pp. 214-224.
[14]A. Leardini, M. G. Benedetti, L. Berti, D. Bettinelli, R. Nativo and S. Giannini, "Rear-foot, mid-foot and fore-foot motion during the stance phase of gait", Gait & Posture, vol. 25, 2007, pp. 453-462.
[15]J. Wilken, S. Rao, C. Saltzman and H. J. Yack, "The effect of arch height on kinematic coupling during walking", Clinical Biomechanics, vol. 26, 2011, pp. 318-323.
[16]J. H. Hicks, "The mechanics of the foot. II. The plantar aponeurosis and the arch", Journal of Anatomy, vol. 88, 1954, pp. 25-30.
[17]E. A. Fuller, "The windlass mechanism of the foot. A mechanical model to explain pathology", Journal of the American Podiatric Medical Associaton, vol. 90, 2000, pp. 35-46.
[18]R. E. Carlson, L. L. Fleming and W. C. Hutton, "The biomechanical relationship between the tendoachilles, plantar fascia and metatarsophalangeal joint dorsiflexion angle", Foot & Ankle International, vol. 21, 2000, pp. 18-25.
[19]A. Gefen, "The in vivo elastic properties of the plantar fascia during the contact phase of walking", Foot & Ankle International, vol. 24, 2003, pp. 238-244.
[20]E. D. Ward, K. M. Smith, J. R. Cocheba, P. E. Patterson and R. D. Phillips, "2003 William J. Stickel Gold Award. In vivo forces in the plantar fascia during the stance phase of gait: sequential release of the plantar fascia", J Am Podiatr Med Assoc, vol. 93, 2003, pp. 429-442.
[21]A. Erdemir, A. J. Hamel, A. R. Fauth, S. J. Piazza and N. A. Sharkey, "Dynamic loading of the plantar aponeurosis in walking", Journal of Bone and Joint Surgery, vol. 86-A, 2004, pp. 546-552.
[22]C. C. Young, D. S. Rutherford and M. W. Niedfeldt, "Treatment of plantar fasciitis", American Family Physician, vol. 63, 2001, pp. 467-474.
[23]D. Singh, J. Angel, G. Bentley and S. G. Trevino, "Fortnightly review. Plantar fasciitis", British Medical Journal, vol. 315, 1997, pp. 172-175.
[24]T. Jeswani, J. Morlese and E. G. McNally, "Getting to the heel of the problem: plantar fascia lesions", Clinical radiology, vol. 64, 2009, pp. 931-939.
[25]J. Amis, L. Jennings, D. Graham and C. E. Graham, "Painful heel syndrome: radiographic and treatment assessment", Foot Ankle, vol. 9, 1988, pp. 91-95.
[26]M. Demaio, R. Paine, R. E. Mangine and D. Drez, "Plantar Fasciitis", Orthopedics, vol. 16, 1993, pp. 1153-1163.
[27]A. T. Patrick and J. B. Peter, "Active and passive mechanisms in the control of heel supination.", Foot and Ankle Surgery, vol. 7, 2001, pp. 131-136.
[28]L. A. Bolgla and T. R. Malone, "Plantar fasciitis and the windlass mechanism: a biomechanical link to clinical practice", Journal of Athletic Training, vol. 39, 2004, pp. 77-82.
[29]W. Kim and A. S. Voloshin, "Role of plantar fascia in the load bearing capacity of the human foot", Journal of Biomechanics, vol. 28, 1995, pp. 1025-1033.
[30]A. Gefen, "Stress analysis of the standing foot following surgical plantar fascia release", Journal of Biomechanics, vol. 35, 2002, pp. 629-637.
[31]J. T. Cheung, M. Zhang and K. N. An, "Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex", Clinical Biomechanics, vol. 19, 2004, pp. 839-846.
[32]J. T. Cheung, M. Zhang and K. N. An, "Effect of Achilles tendon loading on plantar fascia tension in the standing foot", Clinical Biomechanics, vol. 21, 2006, pp. 194-203.
[33]L. Wu, "Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of Virtual Chinese Human after plantar ligamentous structure failures", Clinical Biomechanics, vol. 22, 2007, pp. 221-229.
[34]Y. C. Hsu, Y. W. Gung, S. L. Shih, C. K. Feng, S. H. Wei, C. H. Yu and C. S. Chen, "Using an optimization approach to design an insole for lowering plantar fascia stress-a finite element study", Annals of Biomedical Engineering, vol. 36, 2008, pp. 1345-1352.
[35]A. N. Natali, A. Forestiero, E. L. Carniel, P. G. Pavan and C. Dal Zovo, "Investigation of foot plantar pressure: experimental and numerical analysis", Medical & Biological Engineering & Computing, vol. 48, 2010, pp. 1167-1174.
[36]J. M. Iaquinto and J. S. Wayne, "Computational model of the lower leg and foot/ankle complex: application to arch stability", Journal of Biomechanical Engineering, vol. 132, 2010, pp. 021009.
[37]H. Y. K. Cheng, C. L. Lin, S. W. Chou and H. W. Wang, "Nonlinear finite element analysis of the plantar fascia due to the windlass mechanism", Foot & Ankle International, vol. 29, 2008, pp. 845-851.
[38]H. Y. K. Cheng, C. L. Lin, H. W. Wang and S. W. Chou, "Finite element analysis of plantar fascia under stretch - The relative contribution of windlass mechanism and Achilles tendon force", Journal of Biomechanics, vol. 41, 2008, pp. 1937-1944.
[39]P. Caravaggi, T. Pataky, J. Y. Goulermas, R. Savage and R. Crompton, "A dynamic model of the windlass mechanism of the foot: evidence for early stance phase preloading of the plantar aponeurosis", Journal of Experimental Biology, vol. 212, 2009, pp. 2491-2499.
[40]P. Caravaggi, T. Pataky, M. Gunther, R. Savage and R. Crompton, "Dynamics of longitudinal arch support in relation to walking speed: contribution of the plantar aponeurosis", Journal of Anatomy, vol. 217, 2010, pp. 254-261.
[41]林師誠, 正常足部之三維動態有限元素分析, 碩士論文, 中原大學醫學工程所, 桃園中壢, 2004.
[42]葉齊偉, 使用三維動態有限元素分析探討步行速度與鞋具對於足底壓力的影響, 碩士論文, 中原大學醫學工程所, 桃園中壢, 2005.
[43]鍾曜丞, 足底筋膜對於足部生物力學行為之影響, 碩士論文, 中原大學醫學工程所, 桃園中壢, 2007.
[44]劉奕奎, 步態站立期間後足足底軟組織不同層面之應力分佈探討, 碩士論文, 中原大學醫學工程所, 桃園中壢, 2008.
[45]G. Wu and P. R. Cavanagh, "Isb Recommendations for Standardization in the Reporting of Kinematic Data", Journal of Biomechanics, vol. 28, 1995, pp. 1257-1260.
[46]R. C. Hibbeler, Engineering Mechanics - Dynamics, Tenth ed., 2004.
[47]H. Gray, Anatomy of the Human Body Twentieth ed., 1918.
[48]D. T. Reilly and A. H. Burstein, "Review article. The mechanical properties of cortical bone", Journal of Bone and Joint Surgery, vol. 56, 1974, pp. 1001-1022.
[49]F. A. Bandak, R. E. Tannous and T. Toridis, "On the development of an osseo-ligamentous finite element model of the human ankle joint", International Journal of Solids and Structures, vol. 38, 2001, pp. 1681-1697.
[50]F. L. Buczek and S. A. Banks, "High-Resolution Force Plate Analysis of Utilized Slip Resistance in Human Walking", Journal of Testing and Evaluation vol. 24, 1996, pp. 353-358.
[51]M. Petre, A. Erdemir and P. R. Cavanagh, "An MRI-compatible foot-loading device for assessment of internal tissue deformation", Journal of Biomechanics, vol. 41, 2008, pp. 470-474.
[52]W. R. Ledoux and J. J. Blevins, "The compressive material properties of the plantar soft tissue", Journal of Biomechanics, vol. 40, 2007, pp. 2975-2981.
[53]C. A. Garcia, S. L. Hoffman, M. K. Hastings, J. W. Klaesner and M. J. Mueller, "Effect of metatarsal phalangeal joint extension on plantar soft tissue stiffness and thickness", Foot (Edinb), vol. 18, 2008, pp. 61-67.
[54]A. Gefen, M. Megido-Ravid, Y. Itzchak and M. Arcan, "Biomechanical analysis of the three-dimensional foot structure during gait: A basic tool for clinical applications", Journal of Biomechanical Engineering, vol. 122, 2000, pp. 630-639.
[55]K. L. Moore, CLINICALLY ORIENTEN - Anatomy, Third ed., 1992.
[56]S. C. Wearing, J. E. Smeathers, P. M. Sullivan, B. Yates, S. R. Urry and P. Dubois, "Plantar fasciitis: are pain and fascial thickness associated with arch shape and loading?", American Physical Therapy Association vol. 87, 2007, pp. 1002-1008.
[57]A. Gefen, M. Megido-Ravid, Y. Itzchak and M. Arcan, "Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications", Journal of Biomechanical Engineering, vol. 122, 2000, pp. 630-639.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊