跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/27 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡祐銘
研究生(外文):You-Ming Hu
論文名稱:非晶與低溫多晶薄膜電晶體電氣特性與遷移率之研究
論文名稱(外文):The Electrical Characteristics and Mobility of Amorphous and Low-Temperature Poly-Crystalline Thin-Film Transistors
指導教授:陳雙源陳雙源引用關係王木俊王木俊引用關係
口試委員:劉傳璽黃恆聖
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:54
中文關鍵詞:連續式綠光雷射退火結晶薄膜電晶體低溫多晶矽遷移率
外文關鍵詞:continuous-wave green-laser-crystallizationthin-film transistormobilitygreen laser activationLTPS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  應用在平面顯示器的薄膜電晶體,大部分使用非晶矽薄膜電晶體作為電路控制開關,但其電子遷移率過低 (~ 1 cm2/V-sec) ,導致驅動電流較低,電晶體之開關速度也相對地較慢,阻礙大尺寸螢幕的發展,無法使一個大畫面其反應時間小於8 毫秒.。由於有這些阻礙,因而有低溫多晶矽(low-temperature poly-silicon, LTPS)之開發,可將電子遷移率拉升至~ 100 cm2/V-sec或以上。
  本論文中採用非晶矽薄膜電晶體、爐管退火及連續式綠光雷射退火多晶矽薄膜電晶體,對臨界電壓、載子遷移率、次臨界擺伏、晶粒陷阱缺陷、表面陷阱缺陷等特性進行探討,及溫度對於這些特性的變化曲線有何影響。
  本研究重要性在於能得知,高溫會導致元件特性的改變,當溫度從25 ℃提高至125 ℃,綠光雷射退火的多晶矽薄膜電晶體其臨界電壓變化最嚴重的下降0.4 V,另外,關閉電流增加5倍及次臨界擺幅增加 25%;爐管退火的多晶薄膜電晶體變化最嚴重的臨界電壓下降0.24 V,關閉電流大約增加170倍及次臨界擺幅增加 80 %;非晶矽薄膜電晶體變化最嚴重的的臨界電壓上升1.7 V,關閉電流大約增加2倍及次臨界擺幅降低 17 %。而非晶矽薄膜電晶體對於熱活化產生的變化不同於多晶矽薄膜電晶體,隨著溫度升高,使得元件缺陷因再結晶而修復,讓元件性能變得更好。


Thin film transistor is applied in flat-panel displays, most of display products adopt the amorphous-silicon thin-film transistors (TFTs) to control the signal circuit. Because of the low electron mobility (~ 1 cm2/V-sec), the drive current is also low and the transistor switching speed relatively is slow. This electrical characteristic, which can not provide the response time < 8 msec, will block the development of big-size display products. Due to this concern, the low-temperature poly-silicon (LTPS) technology was developed. The electron mobility could be promoted to or over 100 cm2/V-sec.
In this research, the tested devices are the amorphous-Si TFT, and poly-Si annealed by furnace and annealed by green laser. Comparing the transfer characteristics of the tested devices and discussing the temperature effect on threshold voltage Vth, field effect mobility μFE, and subthreshold swing S.S. are also provided in this work.
The significance of this study is to know that higher temperature was resulted in the variation of the electrical characteristics. When the temperature rise from 25 ℃ to 125 ℃, the worst case of threshold voltage decreases 0.5 V, OFF current increases 5 times and the subthreshold swing increases 25% in the poly-Si TFTs annealed by green laser ; The worst case of threshold voltage decreases 0.24 V, OFF current increase 170 times and the subthreshold swing increase 80% in the poly-Si TFTs by furnace; The worst case of threshold voltage decreases 1.7 V, OFF current increases 2 times and the subthreshold swing decreases 17% in the a-Si:H TFT. However the variation of the transfer characteristics of a-Si:H TFT by thermal activated is very different than the poy-Si TFTs. The bulk traps recover by crystallized with increasing temperature, and the transfer characteristics become better than the initial.


摘要 ................................................................................................................i
ABSTRACT ...................................................................................................ii
致謝 ..............................................................................................................iv
CONTENTS ....................................................................................................v
LIST OF FIGURES .......................................................................................vii
LIST OF TABLES ..........................................................................................ix
Chapter 1 INTRODUCTION ..........................................................................1
1.1 The develop of a-Si:H and Poly-Si technology .......................................1
1.2 Crystallization technology of a-Si thin films ...........................................2
1.3 The advantage of CLC system for manufacturing the poly-Si TFTs .......2
1.4 Motivation ..............................................................................................3
1.5 Organization of this dissertation .............................................................3
Chapter 2 THE PHYSICS OF THIN FILM TRANSISTORS ............................4
2.1 Electrical Parameters Extractions ............................................................4
2.1.1 Threshold voltage ..................................................................................5
2.1.2 Subthreshold swing ..............................................................................6
2.1.3 Field effect mobility ...............................................................................7
2.1.4 ON / OFF current ratio ...........................................................................7
2.1.5 Density of states ....................................................................................8
2.1.6 Interface states density .........................................................................11
2.1.7 Grain boundary trap density ................................................................11
2.2 Effect of TFT structure ..........................................................................12
2.2.1. Impacts of grain boundaries ...............................................................12
2.2.2. Thickness of active layer ....................................................................17
2.2.3. Scaling down effect ............................................................................19
Chapter 3 EXPERIMENTAL DESIGNS ........................................................21
3.1 Experimental Structures ........................................................................21
3.2 Measurement ........................................................................................24
4.1 Transfer characteristics .........................................................................27
4.2 Subthreshold swing ..............................................................................33
4.3 Threshold Voltage ................................................................................36
4.4 ON/OFF ratio ........................................................................................38
4.5 Field effect Mobility .............................................................................43
4.6 Channel grain boundary traps ..............................................................44
4.7 Interface states density .........................................................................47
Chapter 5 CONCLUSIONS AND FUTURE WORKS ...................................49
5.1 Conclusions ...........................................................................................49
5.2 Future Work ...........................................................................................49
Reference .....................................................................................................50

[1.1]Y. J. Choi, W. K. Kwak, K. S. Cho, S. K. Kim, and Jin Jang, “Hydrogenated amorphous silicon thin-film transistor with a thin gate insulator, “ IEEE Electron Device Lett., vol. 21, no. 1, pp. 18-20, 2000.
[1.2]W. J. Sah, J. L. Lin, and S. C. Lee, “High-performance a-Si:H thin-film Transistor using lightly doped channel, “ IEEE Trans. Electron Devices, vol. 38, no. 3, pp. 676-678, 1991.
[1.3]K. Khakzar, and E. H. Lueder, “Modeling of amorphous-silicon thin-film transistors for circuit simulations with SPICE, “IEEE Trans. Electron Devices, vol.3, no. 6, pp. 1428-1434, 1992.
[1.4]S. Zhang, C. Zhu, Johnny K. O. Sin, J. N. Li, and Philip K. T. Mok, “Ultra-Thin Elevated Channel Poly-Si TFT Technology for Fully-Integrated AMLCD System on Glass,” IEEE Trans. Elect. Devices, vol. 54, pp. 569, 2000.
[1.5]H. Baek, M. Lee, J. H. Lee, H. S. Pae, C. J. Lee, J. T. Kim, C. S. Choi, H. K. Kim, T. J. Kim, and H. K. Chung, IEEE J. Solid-State Circ., pp. 41, 2006.
[1.6]P. Barquinha, A. M. Vilà, G. Gonçalves, L. Pereira, R. Martins, J. R. Morante, and E. Fortunato, IEEE Trans. Elect. Dev., pp. 55, 2008.
[1.7]C. W. Lin, M. Z. Yang, C. C. Yeh, L. J. Cheng, T. Y. Huang, H. C. Cheng, H. C. Lin, T. S. Chao, C. Y. Chang, IEEE IEDM, pp. 305, 1999.
[1.8]T. Aoyama, G. Kawachi, N. Konishi, T. Suzuki, Y.‘ Okajima, and K. Miyata, “Crystallization of LPCVD silicon films by low temperature annealing,” J. Electrochem. Soc., vol. 136, no. 4, pp. 1169-1173, 1989.
[1.9]M. Cao, S. Talwar, K. J. Krenmer, T. W. Sigmon and K. C. Sarawat, “A High-Performance Polysilicon Thin-Film Transistor Using XeCl Eximer Laser Crystallization of Pre-Patterned Amorphous Si Films,” IEEE Trans. Electron Devices, vol. 43, no. 4, April 1996.
[1.10] C. C. Tsai, H. H. Chen, Bo-Ting Chen and Huang-Chung Chen, “High-Performance Self-Aligned Bottom-Gate Low-Temperature Poly-Silicon Thin-Film Transistor with XeCl Eximer Laser Crystallization,” IEEE Trans. Electron Devices, vol. 28, no. 7, July 2007.
[1.11] S. W. Lee and S. K. Joo, “Low-Temperature Poly-Si Thin-Film Transistor Fabrication by Metal-Induced Lateral Crystallization,” IEEE Electron Devices Letters, vol. 17, no. 4, April 1996.
[1.12] J. H. Cheon, J. H. Bae, and J. Jang, “Effect of oxygen-plasma treatment on formation of LTPS on SOG by metal-mediated crystallization,” Electrochemical and Solid-State Letters, pp. J155-J157 , vol. 10, 2007.
[1.13] D. P. Gosain, T. Noguchi, and S. Usui, “High mobility thin film transistors fabricated on a plastic substrate at a processing temperature of 110°C,” Jpn. J. Appl. Phys., vol. 39, 2000.
[1.14] M. Cao, S. Talwar, K. J. Krenmer, T. W. Sigmon and K. C. Sarawat, “A High-Performance Polysilicon Thin-Film Transistor Using XeCl Eximer Laser Crystallization of Pre-Patterned Amorphous Si Films,” IEEE Trans. Electron Devices, vol. 43, no. 4, April 1996.
[1.15] W. K. Lee, S. M. Han, J. Choi, M. K. Han, “The characteristics of solid phase crystallized (SPC) polycrystalline silicon thin film transistors employing amorphous silicon process,” J. Non-Crystalline Solids, vol. 354, pp.2509-2512, 2008.
[1.16] K. C. Moon, J. H. Lee, and M. K. Han, “The study of hot-carrier stress on poly-Si TFT employing C-V measurement,” IEEE Trans. on Elect. Dev., vol. 52, pp. 512-517, 2005.
[2.1] L. Michalas, M.A. Exarchos, G..J. Papaioannou, D.N. Kouvatsos and A.T. Voutsas, “Physics and Electrical Characterization of Excimer Laser Crystallized Polysilicon TFTs,” International Conference on Microelectronics, 14-17 May, 2006.
[2.2] A. G. Lewis, T. Y. Huang, I. W. Wu, R. H. Bruce, and A. Chiang, “Physical mechanisms for short channel effects in polysilicon thin film transistors,” IEDM Tech. Dig. , pp.249-352, 1989.
[2.3] S. Tam, P. K. Ko, and C. Hu, “Lucky-electron model of channel hot electron rejection in MOSFET’S,” IEEE Trans Electron Devices, vol. ED-31, no. 9, 1984.
[2.4] C. A. Dimitriadis, P. A. Coxon, L. Dozsa, L. Papadimitrious, and N. Economou,“Performance of thin-film transistors on polysilicon films grown by low-pressure chemical vapor deposition at various pressures,” IEEE Trans. Electron Devices, vol. 39, no. 3, pp 598-606, Mar. 1992.
[2.5] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., vol. 53, no. 2, pp. 1193-1202, Feb. 1982.
[2.6] R. E. Proano, R. S. Misage, and D.G. Ast,“Development and electrical properties of undoped polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp.1915-1922, Sep. 1989.
[2.7] Hitachi Semiconductor Reliability Handbook.
[2.8] R. A. Street, Technology and Applications of Amorphous Silicon. Berlin Heidelberg: Springer , 2000.
[2.9] W. E. Spear and P. G. LeComber, “Investigation of the Localized State Distribution in Amorphous Semiconductors,” Phil. Mag. B, vol. 43, pp. 93, 1981.
[2.10] M. J. Powell, “Analysis of Field-effect-conductance Measurement on Amorphous Semicondutors,” Phil. Mag. B, vol. 43, no. 1, 1981.
[2.11] C. Y. Huang, S. Guha, and S. J. Hudgens, “Study of Gap States in Hydrogenated Amorphous Silicon by Transient and Steady-state Photoconductivity Measurement,” Phys. Rev. B, vol. 27, no.12, 1983.
[2.12] J. D. Cohen, D. V. Lang and J. P. Harbison,“ Direct Measurement of the Bulk Density of Gap States in n-type Hydrogenated Amorphous Silicon,” Phys. Rev. Lett., vol. 45, no.3, 1980.
[2.13] M. Hirose, T. Suzuki and G. H. Dohler, “Electronic Density of States in Discharge-produced Amorphous Silicon,” Appl. Phys. Lett., vol. 34, no. 3, 1979.
[2.14] P. Viktorovitch and G. Moddel, “Interpretation of the Conductance and Capacitance Frequency Dependence of Hydrogenated Amorphous Silicon Schottky Barrier Diodes,” J. Appl. Phys., vol. 51, no. 9, 1980.
[2.15] M. Shur and M. Hack, “Physics of Amorphous Silicon Based Alloy Field-effect Transistors,” J. Appl. Phys., vol. 55, no. 10, 1984.
[2.16] S. Kishida, Y. Naruke, Y. Uchida and M. Matsumura, “Theoretical Analysis of Amorphous-silicon Field-effect-transistors,” Jpn. J. Appl. Phys., vol. 22, no.3, 1983.
[2.17] J. G. Shaw and M. Hack, “An Analytical Model for Calculating Trapped Charge in Amorphous Silicon,” J. Appl. Phys., vol. 64, no. 9, 1988.
[2.18] M. S. Shur, M. D. Jacunski, H. C. Slade and M. Hack, “Analytical Models for Amorphous-silicon and Poly-silicon Thin-film Transistors for High-definition-display Technology,” J. of the SID, vol.3, no. 4,1995.
[2.19] C. A.Dimitriadis, P. A. Coxon, L. Dozsa, L. Papadimitrious, and N. Economou, “Performance of thin-film transistors on polysilicon films grown by low-pressure chemical vapor deposition at various pressures,” IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 598-606, Mar. 1992.
[2.20] S. Wolf, “Silicon processing for the VLSI era,” vol.3-The submicron MOSFET, Ch.7, Thin gate oxides-growth and reliability, 1995.
[2.21] F. C. Chiu ,W. C. Shih, J. Y. Lee and H. L. Hwang, “An investigation of surface state capture cross-sections for metal-oxide-semiconductor field-effect transistors using HfO2 gate dielectrics,” Microelectronics Reliability, vol. 47, Issues 4-5, April-May 2007, pp. 548-551.
[2.22] J. S. Brugler and P.G.A. Jespers, “Charge pumping in MOS devices,” IEEE Trans. Electron Devices, vol. ED-16, 1969.
[2.23] Guido Groeseneken, Hermane. Maes, Nicolas Beltran, and Roger F, “A Reliable Approach to Charge-Pumping Measurements in MOS Transistor, ”IEEE Trans. Electron Devices, vol. ED-31, NO.1, 1984.
[2.24] S. Seki, O. Kogure, and B. Tsujiyama,“A semi-empirical model for field-effect mobility of hydrogenated polycrystalline-silicon MOSFETs,” IEEE Trans. Electron Devices, vol. 35, no. 5, pp. 669-674, 1988.
[2.25] G. A. Bhat, Z. Jin, H. S. Kwok, and Man Wong, “Effects of longitudinal grain boundaries on the performance of MILC-TFTs,” IEEE Trans. Electron Devices lett., vol.20, no. 2, pp. 91-99, 1999.
[2.26] G. A. Armstrong, S, Uppal, S. D. Brotherton and J. R. Ayres: Jpn. J. Appl. Phys. Vol. 37, 1988.
[2.27] G. Fortunato, D. B. Meakin, P. Migliorato and P. G. Le Comber: Philos. Mag. B vol. 57, 1988.
[2.28] Toshiyuki Yoshida, Yoshiki Ebiko, Michiko Takei, Nobuo Sasaki and Toshiaki Tsuchiya,“Grain-Boundary Related Hot Carrier Degradation Mechanism in Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” Jpn. J. Phys., vol. 42, pp. 1999-2003, 2003.
[2.29] T. Tsuchiya and S. Nakajima: IEEE Trans. Electron Devices ED-32 (1985) 205.
[2.30] A. T. Voutsas, D. N. Kouvatsos, L. Michalas, and G. J. Papaioannou,“Effet of Silicon Thickness on the Degradation Mechanisms of Sequential Laterally Solidified Polycrystalline Silicon TFTs During Hot-Carrier Stress,” IEEE Trans. Electron Devices letters, vol. 26, no. 3, March 2005.
[2.31] William Cheng-Yu Ma, Tsung-Yu Chiang, Je-Wei Lin, and Tien-Shen Chao,“Oxide Thinning and Structure Scaling Down Effect Of Low-Temperature Poly-Si Thin-Film Transistors,” Journal of Display Technolohy, vol. 8, No. 1, January 2012, pp.1999-2003.
[2.32] A. Valletta, L. Mariucci, and G. Fortunato, “Surface-scattering effects in polycrystalline silicon thin-film transistors,” Appl. Phys. Lett., vol. 82, no. 18, pp. 3119–3121, May 2003.
[2.33] P. Gaucci, A. Valletta, L. Mariucci, G. Fortunato, and S. D. Brotherton, “Numerical simulation of parasitic resistance effects in polycrystalline silicon TFTs,” IEEE Trans. Electron Devices, vol. 53, no. 3, pp. 573–577, Mar. 2006.
[2.34] C.-Y. Ma, T.-Y. Chiang, C.-R. Yeh, T.-S. Chao, and T.-F. Lei, “Channel film thickness effect of low-temperature polycrystalline-silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 58, no. 4, pp. 1268–1272, Apr. 2011.
[3.1].S. Zhang, C. Zhu, Johnny K. O. Sin, J. N. Li, and Philip K. T. Mok, “Ultra-Thin Elevated Channel Poly-Si TFT Technology for Fully-Integrated AMLCD System on Glass,” IEEE Trans. Elect. Devices, vol. 54, pp. 569, 2000
[3.2].Y. T. Lin, J. M. Shieh, and C. Chen, “Enhanced Hole Mobility and Reliability of Panel Epi-Like Silicon Transistors Using Backside Green Laser Activation,” IEEE Elect. Letters, vol. 28, pp. 790, 2007.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 低溫複晶矽薄膜電晶體及前瞻金屬氧化物薄膜電晶體應用於次世代平面顯示器之電性分析及物理機制研究
2. 核殼結構銅/銀粉末之製備及導電、抗氧化及抗菌性質之研究
3. 以氟佈植處理之次微米低溫多晶矽P型薄膜電晶體特性改善研究
4. 使用鰭式場效應電晶體之靜態隨機存取記憶體的缺陷模型分析與診斷方法
5. 鰭狀、穿隧場效電晶體和異質通道三維積體超薄層元件於超低功耗靜態隨機存取記憶體和邏輯電路之設計與分析
6. 具三閘極奈米線結構高壓複晶矽薄膜電晶體之特性研究
7. 具矽奈米晶體之環繞式閘極無接面奈米線非揮發性記憶體研究
8. 使用FinFET元件並結合電源閘控及匹配線分段技術的內容可定址記憶體之設計
9. 保護層應用在非晶態銦鎵鋅氧薄膜電晶體 之電性物理機制研究
10. 提高亮度均勻性之Full HD主動式矩陣有機發光二極體畫素補償電路設計
11. 28奈米高介電質製程在PDA或DPN氮化 處理下以探討pMOSFETs元件之爾利效應
12. N通道FinFET的門檻電壓調整和驗證與低雜訊功率放大器電路設計
13. 在DPN製程及退火溫度效應後28奈米製程使用閘極高介電質堆疊nMOSFETs之通道調變效應研究
14. 28奈米閘極後製高介電質/金屬閘極nMOSFETs元件佐以DPN氮化製程下之閘極漏電流特性研究
15. 在PDA 和DPN氮化製程下28奈米HK/MG pMOSFETs元件之電特性研究