跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾琮鍵
研究生(外文):Tsung-JianTzeng
論文名稱:不同退火溫度和氮濃度對二氧化鉿nMOSFET之PBTI與NBTI可靠度影響
論文名稱(外文):Effects of Different Annealing Temperatures and Nitrogen Concentrations on PBTI and NBTI Reliability of HfO2 NMOSFETs
指導教授:黃恆盛黃恆盛引用關係陳雙源陳雙源引用關係
口試委員:劉傳璽王木俊
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:62
中文關鍵詞:耦合電漿氮化HfO2正偏壓溫度不穩定性負偏壓溫度不穩定性高介電材料
外文關鍵詞:HfO2Decouple plasma nitridation (DPN)Positive bias temperature instability (PBTI)Negative bias temperature instability (NBTI)High-k dielectric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在新世代的金氧半場效電晶體(MOSFET)中,使用含二氧化鉿(HfO2)的高介電係數材料,當閘極介電層為不可避免的趨勢。最近,使用氮(N)氣的高密度電漿製程,廣泛的應用在HfO2退火中,因為其可增加熱穩定性、減少等效氧化層厚度和改善崩潰特性,但卻極少有探討耦合電漿氮化退火對HfO2介電層之正、負偏壓溫度不穩定性及基本電性的影響,因此,這也就是本論文要研究的重點。
實驗元件是聯華電子所提供28奈米製程的n型電晶體(nMOSFET),二氧化鉿介電層的製作方式是由原子層沉積技術完成。實驗考慮的參數,包括改變電壓、通道長度,再依據所得資料,進行統計、分析實驗結果與電壓的關係,且探討不同退火溫度與含氮量之間的差異。
研究結果顯示,含氮量最高的電晶體,由於載子遷移率劣化使得汲極電流是最低的。而在PBTI的加壓測試條件下,短通道元件劣化程度明顯比長通道嚴重。相較之下,在NBTI的加壓測試條件下,長通道元件提升的性能比短通道元件更多。不論在PBTI或NBTI加壓測試, 8%含氮量、900℃退火的電晶體,對於元件劣化(提升)影響程度為最大的。


In the new generation of MOSFETs, using HfO2 high-k materials as gate dielectric is unavoidable. Recently, the incorporation of nitrogen (N) in HfO2 gate dielectrics has widely utilized as a result of increasing thermal stability, decreasing equivalent oxide thickness (EOT), and statistical improvement of the breakdown characteristics. However, only few literatures concerned about positive and negative BTI for decouple plasma nitridation (DPN). Hence, this study is concentrated on this subject.
The nMOSEFT experimental samples were fabricated from 28nm node high performance logic technology of United Micro-electronics (UMC). The process of HfO2 dielectric layer was deposited by atomic layer deposition (ALD). The wafers were then annealed with different annealing temperature and nitrogen concentration after ALD. In this research, the different stress voltages and channel length are included in the experiment. Consequently experimental data are used to figure out the dependence of degradation on stress voltage, and to determine the difference of four kinds of wafers.
The experimental resultsof this work indicated that under the higher nitrogen concentration on MOSFETs the drain current is the worst because of the mobility degradation. After the PBTI stress, the degradation in those short channel nMOSFETs reveals larger than that in long channel. In contrast, the enhancement is more sensitivity in long channel for NBTI stress conditions. Regardless of PBTI or NBTI, the nMOSFETs with 8% nitrogen 900℃ conditions is the most sensitive to (degrade / enhance) among all devices.


ABSTRACT (Chinese) i
ABSTRACT (English) ii
ACKNOWLEDGEMENTS iv
CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
Chapter 1INTRODUCTION 1
1.1 Background 1
1.2 Thesis Organization 2
Chapter 2ELECTRICAL AND BIAS TEMPERATURE INSTABILITY CHARACTERISTICS OF HIGH-K GATE DIELECTRICS 3
2.1 Scaling Trend of the MOSFETs 3
2.2 From SiO2 to High-κ Gate Dielectrics 4
2.3 Research about Hf-based Dielectrics 7
2.3.1 Properties of HfO2 gate dielectrics 7
2.3.2 Properties of Hafnium silicate gate dielectrics 7
2.3.3 The high density of defects in Hf-based dielectrics 8
2.3.4 The effect of the incorporation of nitrogen in Hf-based gate dielectrics 9
2.4 Research about the Effect of Decouple Plasma Nitridation (DPN) on MOSFETs 13
2.5 Mobility Calculation 17
2.6 Research about PBTI and NBTI Effects 18
2.6.1 PBTI and NBTI development 18
2.6.2 NBTI mechanisms 18
2.6.3 PBTI and NBTI effects 21
2.7 BTI Problems in High-k nMOSFETs 23
2.7.1 Charge trapping in high-k dielectrics 23
2.7.2 Temperature effect 24
2.7.3 Recovery phase 24
2.8 Problem Formulation 26
Chapter 3EXPERIMENTAL DESIGNS 28
3.1 Experimental Procedures 28
3.2 Experimental Structures Process 30
3.3 Stress and Measurement Conditions 31
Chapter 4RESULTS AND DICUSSION 33
4.1 Electrical Characteristics of HfO2 Gate Dielectrics 33
4.1.1 Id-Vd characteristics 33
4.1.2 Id-Vg characteristics 34
4.1.3 C-V characteristics 37
4.1.4 Effective electron mobility by Idlin method 38
4.1.5 Ion and Ioff 39
4.2 PBTI and NBTI Reliability of Different Process 40
4.2.1 The Vt shift and Id degradation of the PBTI stress for long channel nMOSFET at 27℃ 40
4.2.2 The Vt shift and Id degradation of the PBTI stress for short channel nMOSFETs at 27℃ 43
4.2.3 The Vt shift and Id degradation of the NBTI stress for long channel devices at 27℃ 45
4.2.4 The Vt shift and Id degradation of the NBTI stress for short channel devices at 27℃ 48
4.3 Summary of the Vt Shift with Different Channel Lengths 50
4.4 The Variation of Interface States and Oxide Trap Charges after PBTI stress 52
Chapter 5CONCLUSION AND FUTURE WORKS 55
5.1 Conclusion 55
5.2 Future Works 56
REFERENCES 57


[1]G. D. Wilk, R.M. Wallace, J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, pp. 5243-5275, 2001.
[2]J. Robertson, “Electronic structure and band offsets of high-dielectric-constant gate oxides,” Mater. Research Soc., vol. 27, pp. 217-221, 2002.
[3]D. G. Schlom and J. H. Haeni, “A thermodynamic approach to selecting alternative gate dielectrics,” Mater. Research Soc., vol. 27, pp. 198, 2002.
[4]J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, pp. 1785-1791, 2000.
[5]M. Jo, H. Park, J.-M. Lee et al., “Effect of oxygen postdeposition annealing on bias temperature instability of hafnium silicate MOSFET,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 399-401, 2008.
[6]Kerber, E. Cartier, L. Pantisano et al., “Characterization of the VT -instability in SiO2/HfO2 gate dielectrics,” Proc. IRPS, pp.41-45, 2003.
[7]S. Zafar, A. Kumar, E. Gusev et al., “Threshold voltage instabilities in high-κ gate dielectric stack,” IEEE Trans. Device Mater. Rel., vol. 5, no. 1, pp. 45–64, Mar. 2005.
[8]H. Park, R. Choi, B. H. Lee et al., “Decoupling of cold-carrier effects in hot-carrier reliability assessment of HfO2 gated nMOSFETs,” IEEE Electron Device Lett., vol. 27, no. 8, pp. 662–664, Aug. 2006.
[9]M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro et al., “Application of HfSiON as a gate dielectric material,” Applied Physics Letters, vol. 80, pp. 3183-3185, 2002.
[10]M. Cho, J. Park, H. B. Park et al., “Thermal stability of atomic-layer-deposited HfO2 thin films on the SiNx-passivated Si substrate,”Applied Physics Letters, vol. 81, pp. 3630-3632, 2002.
[11]C. S. Kang, H. J. Cho, R. Choi et al., “The electrical and material characterization of hafnium oxynitride gate dielectrics with TaN-gate electrode,” IEEE Trans. Electron Devices, vol. 51, pp. 220-227, 2004.
[12]M. Koyama, H. Satake, M. Koike et al., “Degradation mechanism of HfSiON gate insulator and effect of nitrogen composition on the statistical distribution of the breakdown,” Tech. Dig. - Int. Electron Devices Meet., pp.38.4.1 - 38.4.4, 2003.
[13]X. Yu, C. Zhu, M. Yu, “Impact of nitrogen in HfON gate dielectric with metal gate on electrical characteristics, with particular attention to threshold voltage instability,” Applied Physics Letters, vol.90, pp. 103502-103502-3 , 2007.
[14]C. H. Choi, S. J. Rhee, T. S. Jeon et al., “Thermally stable CVD HfOxNy advanced gate dielectrics with poly-Si gate electrode,” Tech. Dig. - Int. Electron Devices Meet., pp. 857 – 860, 2002.
[15]M. Houssa, M. Aoulaiche, S. De Gendtet al., “Negative bias temperature instabilities in HfSiO(N)-based MOSFETs: Electrical characterization and modeling,” Microelectronics Reliability, vol. 47, pp. 880-889, 2007.
[16]International Technology Roadmap for Semiconductors Home page, http://www.itrs.net/
[17]International Technology Roadmap for Semiconductors, 2003 Edition, Semiconductor Industry Association (SIA), Austin, Texas: SEMATECH, USA, 2706 Montopolis Drive, Austin, Texas 78741.
[18]A. Chin, Y .H. Wu, S.B. Chen et al., ”High quality La203 and A1203 gate dielectrics with equivalent oxide thickness 5-10 Å,’’ VLSI Tech. Dig., pp. 16, 2000.
[19]W. J. Qi, R. Nieh, B. H. Lee et al., “MOSCAP and MOSFET characteristics using Zr02 gate dielectric deposited directly on Si,” IEDM Tech. Dig., pp.145, 1999.
[20]I. Crupi, “Hot carrier effects in n-MOSFETs with SiO2/HfO2/HfSiO gate stack and TaN metal gate,” Microelectronic Engineering, vol. 86, pp. 1–3, 2009.
[21]J. Robertson, “Electronic structure and band offsets of high-dielectric-constant gate oxides,” Mater. Research Soc., vol. 27, pp. 217-221, 2002.
[22]G. D. Wilk, R.M. Wallace, J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, pp. 5243-5275, 2001.
[23]T. Hori, Gate Dielectrics and MOS ULSIs (Springer-Verlag, New York, 1977), pp. 44-46.
[24]E. P. Gusev, D. A. Buchanan, E. Cartier et. al., “Ultrathin high-κ gate stacks for advanced CMOS devices,” Proc. IEEE IEDM Tech. Dig. pp. 451–454, 2001.
[25]Y. S. Lin, R. Puthenkovilakam and J. P. Chang, “Dielectric property and thermal stability of HfO2 on silicon,” Appl. Phys. Lett., vol. 81, pp. 2041-2043, 2002.
[26]L. Kang, B. H. Lee, W. J. Qi et al., “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Device Lett., vol. 21, pp. 181-183, 2000.
[27]J. Robertson, “Interfaces and defects of high-K oxides on silicon,” Solid-State Electronics, vol. 49, pp. 283–293, 2005.
[28]M. Koyama, A. Kaneko, T. Ino et al., “Effects of nitrogen in HfSiON gate dielectric on the electrical and thermal characteristics,” in IEEE IEDM Tech. Dig., pp. 849–852, 2002.
[29]M. S. Akbar, H.-J. Cho, R. Choi et al., “Optimized NH3 annealing Process for high-quality HfSiON gate oxide,” IEEE Electron Device Lett., vol. 25, pp. 465–467, 2004.
[30]J. C. Wang, Y. P. Hung, C. L. Lee et al.,“Improved Characteristics of Ultrathin CeO2 by Using Postnitridation Annealing,” J. Electrochem. Soc., vol. 151, pp. F17-F21, 2004.
[31]Y. Nishikawa, T. Yamaguchi, M. Yoshiki et al., “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si (111),” Appl. Phys. Lett., vol. 81, pp.4386-4388, 2002.
[32]K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, pp. 2757-2776, 1996.
[33]Q. Lu, H. Takeuchi, R. Lin et al., “Hot Carrier Reliability of n-MOSFET with Ultra-thin Hf02 Gate Dielectric and Poly-Si Gate,”IEEE 40th Annual International Reliability Physics Symposium. Dallas,2002.
[34]G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-5275, 2001.
[35]B. H. Lee, L. Kang, W. J. Qi et al., “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” in IEEE IEDM Tech. Dig., pp. 133-136, 1999.
[36]E. P. Gusev, D. A. Buchanan, E. Cartier et al., “Ultrathin high-K gate stacks for advanced CMOS devices,” in IEEE IEDM Tech. Dig., pp. 451-454, 2001.
[37]J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, pp. 1785-1791, 2000.
[38]H. Iwai, S. Ohmi, S. Akama et al., “Advanced gate dielectric materials for sub-100 nm CMOS,” in IEEE IEDM Tech. Dig., pp. 625-628, 2002.
[39]B. H. Lee, R. Choi, L. Kang et al., “Characteristics of TaN gate MOSFET with ultrathin hafnium oxide (8Å-12Å),” in IEEE IEDM Tech. Dig., pp. 39-42, 2000.
[40]D. Barlage, R. Arghavani, G. Dewey et al., “High-frequency response of 100 nm integrated CMOS transistors with high-K gate dielectrics,” in IEEE IEDM Tech. Dig., pp. 231-234B, 2001.
[41]G. Wilk, and R. M. Wallace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon.”Applied Physics Letters, vol. 74,pp. 2854-2856, 1999.
[42]G. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advanced gate dielectrics.” Journal of Applied Physics, vol. 87,pp. 484-492, 2000.
[43]A. Callegari, E. Cartier, M. Gribelyuk et al., “Physical and electrical characterizationof Hafnium oxide and Hafnium silicate sputtered films.” Journal of Applied Physics, vol. 90,pp. 6466-6475, 2001.
[44]H. Park, M. Hasan, M. Jo et al., “ Metal Gate and High-k Gate Dielectrics for sub 50 nm High Performance MOSFETs,” Electronic Materials Letters, Vol. 3, No. 2, pp. 75-85, 2007.
[45]H.-H. Tseng, Y. Jeon, P. Abramowitz et al., “Ultra-Thin Decoupled Plasma Nitridation (DPN) Oxynitride Gate Dielectric for 80-nm Advanced Technology,” Electron Device Letters, vol. 23, pp. 704-706, 2002.
[46]N. Sa, J. F. Kang, H. Yang et al., “Mechanism of Positive-Bias Temperature Instability in Sub-1-nm TaN/HfN/HfO2 Gate Stack With Low Preexisting Traps,” IEEE Electron Device Lett.,vol. 26, pp. 610 – 612, 2005.
[47]D. K. Schroder, J. A. Babcock, “Negative bias temperature instability: road to 68 cross in deep submicron silicon semiconductor manufacturing,” Journal of Applied Physics, Vol. 94, No. 1, 1 July 2003.
[48]B. E. Deal, M. Sklar, A. S. Grove et al., “Characteristics of the surface-state charge (Qss) of thermally oxidized silicon,” J. Electrochem. Soc., Vol. 114, pp. 266, 1967.
[49]S. Ogawa, M. Shimaya, and N. Shiono, “Interface-trap generation at ultra-thin SiO2 (4-6nm) Si interface during negative-bias temperature aging,” J. Appl. Phys, Vol. 77, pp.1137-1148, 1995.
[50]C. Parthasarathy, “Design-in reliability with emphasis on NBTI,” IEEE Integrated Reliability Workshop (IRW), 2005.
[51]N. K. Jha, and V. R. Rao, “A new oxide trap-assisted NBTI degradation model,” IEEE Electron Device Letters, Vol. 26, No. 9, pp. 687-689, Sep. 2005.
[52]S. Mahapatra, S. Sharma, P. B. Kumar et al., “Explanation of Negative Bias Temperature Instability Mechanism in pMOSFETs by Reaction-Diffusion Model,” Extended abstracts of the 2005 International Conference on Solid State Devices and Materials, pp. 870-871, 2005.
[53]M. Denais, A. Bravaix, V. Huard et al., “New hole trapping characterization during NBTI in 65nm node technology nitridation processing,” IEEE, 2004 IRW Final Report, pp.121-124, 2004.
[54]M. Denais, V. Huard, C. Parthasarathy et al., “Interface trap generation and hole trapping under NBTI and PBTI in advanced CMOS technology with a 2-nm gate oxide,” IEEE Transaction on device and materials reliability, Vol. 4, No. 4, pp. 715-722, Dec. 2004.
[55]T. Yang, C. Shen, M. F. Li et al., “Interface trap passivation effect in NBTI measurement for pMOSFET with SiON dielectric,” IEEE Electron Device Letters, Vol. 26, No. 10, Oct. 2005.
[56]T. Yang, C. Shen, M. F. Li et al., “Fast DNBTI components in p-MOSFET with SiON dielectric,” IEEE Electron Device Letters, Vol. 26, No. 11, Nov. 2005.
[57]江婉如,NBTI 對具有超薄介電層之深次微米P 型通道電晶體特性影響之研究,交大電子所碩士論文(黃調元、林鴻志指導),2003。
[58]A. Shanware, M. R. Visokay,J. J. Chambers et al., “Evaluation of the positive bias temperature stress stability in HfSiON gate dielectrics,” Proc. Int. Reliab. Phys. Symp., 2003, pp. 208–213.
[59]D. J. DiMaria, “The properties of electron and hole traps in thermal Si02 layers grown on Si,” The Physics of SO2 and its Interfaces, p. 160, 1978.
[60]G. Lucovsky, “Electronic structure of high-k transitionmetal and rare-earth gate dielectrics for aggressivelyscaled Si devices,” IWGI, p.14-25, 2001.
[61]Q. Wang, M. Brox,W. H. Krautschneideret al., “Explanation and model for the logarithmic time dependence of p-MOSFETs degradation,” Elect. Dev. Lett. Vol. 12, pp. 218-220, 1991.
[62]W. J. Zhu, T. P. Ma,S. Zafaret al., “Charge trapping in ultrathin hafnium oxide,” Elect. Dev. Lett., Vo1.23, pp. 597 -599, 2002.
[63]D. J. DiMana, F. J. Feigl,S. R. Butleret al., “Capture and emission of electrons at 2.4 eV-deep trap level in Si02 films,” Physical Review B, Vol. 11, No. 12, 1975.
[64]D. A. Buchanan, R. A. Ahram,M.J. Morantet al., “Charge trapping in silicon-rich Si3N4 thin films,” Solid state electronics, vol. 30, NO. 12, pp.1295-1301, 1987.
[65]Mong-Song Liang and C. Hu, “Electron trapping in very thin thermal silicon dioxides,” IEDM Technical Digest, pp. 396-399, 1981.
[66]A. Kumar, T. H. Ning,M.V. Fischettiet al., “Hot-carrier charge trapping and reliability in high-k dielectrics,” VLSI Technical Digest, pp. 152-153, 2002.
[67]S. Y. Chen, C. H. Tu, J. C. Lin et al., “Temperature effect on the hot-carrier induced degradation of PMOSFETs,” IIRW Final Report, pp. 163-166, 2006.
[68]F. Crupi,C. Pace, G. Cocorulloet al., “Positive Bias Temperature Instability in nMOSFETs with ultra-thin Hf-silicate gate dielectrics,” Microelectronic Engineering 80 (2005)
[69]J. H. Stathis and D. J. DiMaria,” Reliability projection for ultra-thin oxides at low voltage,” IEDM Tech. Dig., pp. 167, 1998.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊