跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾騏任
研究生(外文):Chi-Jen Chung
論文名稱:鐵鉑-二氧化鈦奈米複合材料合成及特性分析
論文名稱(外文):Synthesis and characterization of FePt/TiO2 nanocomposite
指導教授:魏大華
口試委員:張晃暐姚永德余岳仲
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:100
中文關鍵詞:鐵鉑二氧化鈦核殼式奈米粒子化學還原法溶膠凝膠法金紅石穿透式電子顯微鏡
外文關鍵詞:FePtTiO2core-shell nanoparticlechemical reductionsol-gel methodRutileTransmission Electron Microscopy
相關次數:
  • 被引用被引用:5
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米材料與技術在生物科技上有廣泛應用的前景,所以本篇論文,希望製備出一種具有磁學性質和光學性質的核殼型式奈米粒子。本研究先是利用化學還原法(Chemical reduction method)製備出具有親水性( Hydrophilic )的FePt奈米粒子;再利用溶膠凝膠法 ( Sol-gel method ) 在低溫下製備出金紅石( Rutile )的TiO2 奈米粒子;最後結合化學還原法和溶膠凝膠法成功地製備出具有親水親油性FePt包覆有結晶性的TiO2之核殼型式( core-shell )奈米粒子。最後將這些樣品分別以X光繞射儀(XRD)、穿透式電子顯微鏡(TEM)、傅粒葉轉換紅外線光譜儀(FTIR)、紫外光/可見光光譜儀(UV/vis)、振動試樣磁力計(VSM)、高周波加熱器(MFH)等儀器鑑定並分析其性質,實驗結果顯示:以 四甘醇(Tetraethylene glycol)所製備出來的FePt 奈米粒子因表面有 -OH、 -COO-M和 -CO-M的官能基訊號,可使FePt 奈米粒子可溶於有機溶劑和水溶液中,且有較大的飽和磁化量,為30.69 emu/g;在低溫下,製備出的金紅石相TiO2 奈米粒子,隨著退火溫度增加到800 ℃,並不會有相變化;最後發現添加不同TiCl4前驅物比例時,觀察到有明顯的單顆FePt@TiO2核殼式奈米粒子,該奈米粒子具有磁學性質,且對紫外光波長產生吸收反應,希望此核殼奈式米粒子在未來可用於奈米生物醫藥材料中。

Nanomaterials and nanotechnologies have widespread applications in biomedical fields. In this research, we intend to acquire the core-shell nanoparticles with the optical and magnetic properties for those needs. Synthesis of FePt/TiO2 nanocomposite was processed through three stages. First, Chemical reduction method was used to prepared hydrophilic FePt nanoparticles. Then using Sol-gel method to obtain the rutile form of TiO2 nanoparticles at low temperature. Finally, a core-shell nanoparticles of hydrophilic and lipophilic FePt coated with TiO2 crystalline coated was successfully acquired by combining both the chemical reduction method and sol-gel method. Characterizations were determined by using X-ray Diffractometer (XRD),Transmission Electron Microscopy (TEM),Fourier transform infrared spectrometer (FTIR),UV/Vis spectrophotometer (UV/vis),Vibrating Sample Magnetometer (VSM),and The high-frequency heater (MFH). The FePt nanoparticles prepared in solvent of tetraethylene glycol, which have -OH,-COO-M and -CO-M signal functional groups, are soluble in organic solvents and aqueous solutions. And the saturation magnetization is 30.69 emu/g. The rutile TiO2 nanoparticles prepared at low temperatures will not have phase transformation at the annealing temperature increased to 800 ℃. Finally, single FePt@TiO2 core-shell nanoparticles were observed under different ratio of TiCl4 precursor which exhibit magnetic properties and reaction to UV wave absorption. This core-shell nanoparticles can be applied to biomedical in the future.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的與範圍 3
第二章 文獻回顧與理論 4
2.1 奈米材料 4
2.2 奈米粒子的基本特性 4
2.2.1 表面效應 4
2.2.2 量子尺寸效應 5
2.2.3 小尺寸效應 6
2.2.4 量子穿隧效應 7
2.2.5 奈米粒子的製備 9
2.3 FePt奈米粒子的特性 10
2.4 FePt奈米粒子的製備 12
2.5 FePt奈米粒子在生醫上的應用 13
2.6 TiO2奈米粒子的特性 15
2.7 TiO2奈米粒子的製備 17
2.8 TiO2奈米粒子在生醫上的應用 21
2.9 FePt核殼型奈米複合材料在生醫上及其他應用 22
第三章 實驗方法及步驟 24
3.1 製備親油相FePt奈米粒子 25
3.1.1 實驗藥品 26
3.1.2 實驗設置 26
3.1.3 實驗步驟 27
3.2 製備親水相FePt奈米粒子 28
3.2.1 實驗藥品 29
3.2.2 實驗設置 30
3.2.3 實驗步驟 30
3.3 製備親水親油相FePt奈米粒子 31
3.3.1 實驗藥品 32
3.3.2 實驗設置 32
3.3.3 實驗步驟 33
3.4 製備Rutile TiO2奈米粒子 34
3.4.1 實驗藥品 35
3.4.2 實驗設置 35
3.4.3 實驗步驟 36
3.5 製備FePt@TiO2核殼奈米粒子 37
3.5.1 實驗藥品 38
3.5.2 實驗步驟 38
3.6 儀器介紹 40
3.6.1 X-ray繞射晶體結構分析儀 40
3.6.2 穿透式電子顯微鏡 41
3.6.3 傅立葉轉換紅外線光譜儀 42
3.6.4 紫外光/可見光光譜儀 43
3.6.5 振動試樣磁力計 44
3.6.6 拉曼光譜儀 45
3.6.7 高週波加熱器 46
第四章 實驗結果與討論 48
4.1 FePt奈米粒子的實驗結果與討論 48
4.1.1 FePt奈米粒子的晶體結構分析 49
4.1.2 FePt奈米粒子的粒徑、形貌和成份分析 51
4.1.3 FePt奈米粒子的表面性質分析 54
4.1.4 FePt奈米粒子的光學分析 57
4.1.5 FePt奈米粒子的磁學分析 57
4.2 TiO2奈米粒子的實驗結果與討論 60
4.2.1 TiO2奈米粒子的晶體結構分析… 60
4.2.2 TiO2奈米粒子的粒徑、形貌和成份分析… 64
4.2.3 TiO2奈米粒子的光學分析… 69
4.2.4 TiO2奈米粒子的磁學分析 71
4.3 FePt@TiO2奈米粒子的實驗結果與討論 73
4.3.1 FePt@TiO2奈米粒子的晶體結構分析 73
4.3.2 FePt@TiO2奈米粒子的粒徑、形貌和成份分析 76
4.3.3 FePt@TiO2奈米粒子的光學分析 82
4.3.4 FePt@TiO2奈米粒子的磁學分析 84
第五章 結論 87
第六章 未來建議 89
參考文獻 90


[1]Don Ho, Xiaolian Sun, And Shouheng Sun, “Monodisprse Magnetic Nanoparticles for Theranostic Applications”, Acc. Chem. Res., Vol 44, 2011, pp. 875- 882.
[2]Sudhanshu Srivastava, Bappaditya Samanta, Palaniappan Arumugam, Gang Han, Vincent M. Rotello, “DNA-mediated assembly of iron platinum (FePt) nanoparticles”, J. Mater. Chem., Vol 17, 2007, pp. 52-55.
[3]Teruhisa Ohno, Koji Sarukawa, Kojiro Tokieda, Michio Matsumura, “Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases”, Journal of Catalysis, Vol 203, 2001, pp. 82-86.
[4]蔡信行、孫光中,「奈米科技導論-基本原理及應用」,新文京開發,台北,2004。
[5]A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science, Vol. 271, 1996, pp. 933-937.
[6]郭清癸、黃俊傑、牟中原,「金屬奈米粒子的製造」,物理雙月刊,二十三卷六期,2001 年12 月,第614頁。
[7]Narayan Poudyal, Girija S. Chabey, Chuan-bing Rong, J. Ping Liu, “Shape control of FePt nanocrystals”, J. Appl. Phys., Vol 105, 2009, pp. 07A749 - 07A749-3.
[8]Levent Colak, George C Hadjipanayis, “Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition”, Nanotechnology, Vol 20, 2009, pp.485-602.
[9]Matthew S. Wellons, William H. Morris, III, Zheng Gai, Jian Shen, James Bentley, James E. Wittig and Charles M. Lukehart, “Direct Synthesis and Size Selection of Ferromagnetic FePt Nanoparticles”, Chem. Mater., Vol 19, 2007, pp.2483.
[10]Shouheng Sun, “Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles”, Adv. Mater., 2006, pp. 393-403.
[11]C. H. Yu, N. Caiulo, C. C. H. Lo, K. Tam, S. C. Tsang, “Synthesis and Fabrication of a Thin Film Containing Silica-Encapsulated Face-Centered Tetragonal FePt Nanoparticles”, Advanced Materials, Vol 18, 2006, pp. 2312–2314.
[12]T. Burkert, O. Eriksson, S. I. Simak, A. V. Ruban, B. Sanyal, L. Nordström, J. M. Wills, “Magnetic anisotropy of L10 FePt and Fe1−xMnxPt”, Phys. Rev. B, 2005, Vol 71, 134 411.
[13]G. Brown, B. Kraczek, A. Janotti, T. C. Schulthess, G. M. Stocks, D. D. Johnson, “Competition between ferromagnetism and antiferromagnetism in FePt”, Phys. Rev. B., 2003, Vol 68, 052 405.
[14]O. Kitakami, S. Okamoto, N. Kikuchi, Y. Shimada, “Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films”, Phys. Rev. B., 2002, Vol 66, 024413.
[15]J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gyorffy, L. Szunyogh,B. Ginatempo, E. Bruno, “Temperature Dependent Magnetic Anisotropy in Metallic Magnets from an Ab Initio Electronic Structure Theory: L10-Ordered FePt”, Phys. Rev. Lett., 2004, Vol 93, 257 204.
[16]B. Rellinghaus, E. Mohn, L.Schultz, T. Gemming, M. Acet, A. Kowalik and B. F. Kock, “On the L10 Order Kinetics in Fe-Pt Nanoparticles”, IEEE Trans. Magn., Vol 42, 2006, pp.3048.
[17]Laudemir Carlos Varanda and Miguel Jafelicci Jr., “Self-Assemble FePt Nanocrystals with Large Coercivity: Reduction of the fcc-to-L10 Ordering Temperature”, J. Am. Chem. Soc., Vol 128, 2006, p.11062.
[18]L. Y. Lu, D. Wang, X. G. Xu, Q. Zhan and Y. Jiang, “Enhancement of Magnetic Properties for FePt Nanoparticles by Rapid Annealing in a Vacuum”, J. Phys. Chem., Vol 113, 2009, p.19867.
[19]Masafumi Nakaya, Masayuki Kanehara and Toshiharu Teranishi, “One-Pot Synthesis of Large FePt Nanoparticles from Metal Salts and Their Thermal Stability”, Langmuir, Vol 22, 2006, p.3485.
[20]Daren Li, Narayan Poudyal, Vikas Nandwana, Zhiqiang Jin, Kevin Elkins and J. Ping Liu, “Hard magnetic FePt nanoparticles by salt-matrix annealing”, J. Appl. Phys., Vol 99, 2006, p.08E911.
[21]Thaddeus B. Massalski, Binary alloy phase diagrams, Materials Park, Ohio/ASM Internation, 1990.
[22]Shouheng Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices”, Science, Vol 287, 2000, p.1989.
[23]Shouheng Sun, “Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles”, Adv. Mater., Vol 18, 2006, p.393.
[24]Shouheng Sun, Eric E, Dieter Weller, C. B Murray, “Compositionally Controlled FePt Nanoparticle Materials”, IEEE Trans. Magn., Vol 37, 2001, p.1239.
[25]Shouheng Sun, Simone Anders, Thomas Thomson, J. E. E. Baglin, Mike F. Toney, Hendrik F. Hamann, C. B. Murray, and Bruce D. Terris, “Controlled Synthesis and Assembly of FePt Nanoparticles”, J. Phys. Chem. B, Vol 107, 2003, p.5419-5425.
[26]Kevin E. Elkins, Tejaswi S. Vedantam, J. P. Liu, Hao Zeng, Shouheng Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method”, Nano Letters, Vol 3, 2003, p.1647.
[27]莊尚餘、陳學禮、鄭旭君、王鉦元、朱鐵吉、林俊宏,「金奈米粒子之特殊光學特性與研究之應用」,奈米通訊,十二卷三期,第8頁。
[28]楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,二十八卷四期,2006 年8 月,第692頁。
[29]Nisha Shukla, Chao Liu, Paul M. Jones, Dieter Weller, “FTIR study of surfactant bonding to FePt nanoparticles”, J. Magn. Magn. Mater., Vol 266, 2003, p.178.
[30]Hitesh G. Bagaria, Earl T. Ada, Mohammed Shamsuzzoha, David E. Nikles Duane, T. Johnson, “Understanding Mercapto Ligand Exchange on the Surface of FePt Nanoparticles” ,Langmuir, Vol 22, 2006, p.7732.
[31]P. Gibot, E. Tronc, C. Chaneac, J. P. Jolivet, D. Fiorani, A.M. Testa, ”(Co, Fe)Pt nanoparticles by aqueous route; self-assembling, thermal and magnetic properties”, Journal of Magnetism and Magnetic Materials, Vol 290-291, 2005, p.555-558.
[32]Rui Hong, Nicholas O. Fischer, Todd Emrick, Vincent M. Rotello, “Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications”, Chem. Mater., Vol 17, 2005, p.4617.
[33]Man F. Yan, “Microstructural control in the processing of electronicceramics”, Materials Science and Engineering, Vol 48, 1981, pp. 53–72.
[34]Lixin Cao, Zi Gao, Steven L. Suib, Timothy N. Obee, Steven O. Hay, James D. Freihaut, “Photocatalytic Oxidation of Toluene on Nanoscale TiO2 Catalysts: Studies of Deactivation and Regeneration”, Journal of Catalysis, Vol 196, 2000, pp. 253–261.
[35]Akira Fujishima, Xintong Zhang, Donald A. Tryk, “TiO2 photocatalysis and related surface phenomena, Surface Science Reports”, Vol 63, 2008, pp. 515–582.
[36]Nakissa Sadrieh, Anna M. Wokovich, Neera V. Gopee, Jiwen Zheng, Diana Haines, David Parmiter, Paul H. Siitonen, Christy R. Cozart, Anil K. Patri, Scott E. McNeil, Paul C. Howard, William H. Doub and Lucinda F. Buhse, “Lack of Significant Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano- and Submicron-Size TiO2 Particles”, Toxicological Science, Vol 115, 2010, pp.156-166.
[37]A. Nakaruk, C. Y. Lin, D. S. Perera, C. C. Sorrell, “Effect of annealing temperature on titania thin films prepared by spin coating”, J Sol-Gel Sci Technol , Vol 55, 2010, pp. 328–334.
[38]Gaurav Shukla, Pratima K. Mishra, Alika Khare, “Effect of annealing and O2 pressure on structural and optical properties of pulsed laser deposited TiO2 thin films”, Journal of Alloys and Compounds, Vol 489, 2010, pp. 246–251.
[39]Ya-Qi Hou, Da-Ming Zhuang, Gong Zhang, Ming Zhao, Min-Sheng Wu, “Influence of annealing temperature on the propertiesof titanium oxide thin film”, Applied Surface Science, Vol 218, 2003,pp. 97–105.
[40]高濂、李蔚,「奈米陶瓷」,五南,台北,2003。
[41]N. Venkatachalam, M. Palanichamy, V. Murugesan, “Sol–gel preparation and characterization of nanosize TiO2: Its photocatalytic performance”, Materials Chemistry and Physics, Vol 104, 2007, pp. 454–459.
[42]Agatino Di Paola, Giovanni Cufalo, Maurizio Addamo, Marianna Bellardita a, Renzo Campostrini, Marco Ischia, Riccardo Ceccato, Leonardo Palmisano, “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions”, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol 317, 2008, pp. 366–376.
[43]Young Ug Ahna, Eui Jung Kimb, Hwan Tae Kimc, Sung Hong Hahn, “Variation of structural and optical properties of sol-gel TiO2 thin films with catalyst concentration and calcination temperature”, Materials Letters, Vol 57, 2003, pp. 4660–4666.
[44]Hee-Dong NAM, Byung-Ha Lee, Sun-Jae Kim, Chung-Hwan Jung, Ju-Hyeon, Sung Park, “Preparation of ultrafine crystalline TiO2 powders from aqueous TiCl4 Solution by Precipitation”, Jpn. J. Appl. Phys. ,Vol. 37, 1998, pp. 4603-4608.
[45]Markus Niederberger, Michael H. Bartl, Galen D. Stucky, “Benzyl Alcohol and Titanium Tetrachloride A Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles”, Chem. Mater., Vol 14, 2002, pp 4364–4370.
[46]Renhe Chu, Jichang Yan, Suoyuan Lian, Yuehong Wang, Fucheng Yan, Dawei Chen, “Shape-controlledsynthesis of nanocrystallinetitania at low temperature”, Solid State Communications, Vol 130, 2004, pp. 789–792.
[47]Ru-Fen Chen, Lei Zhang, Yu Wei, Deng-Lu Hou, “Preparation of rutile (TiO2) nanostructured materials at low temperature from TiCl4 aqueous solution”, J Mater Sci , Vol 42, 2007, pp.7141–7146.
[48]Yuanzhi Li, Nam-Hee Lee, Doo-Sun Hwang, Jae Sung Song, Eun Gu Lee, Sun-Jae Kim, “Synthesis and Characterization of Nano Titania Powder with High Photoactivity for Gas-Phase Photo-oxidation of Benzene from TiOCl2 Aqueous Solution at Low Temperatures”, Langmuir,Vol 20, 2004, pp.10838-10844.
[49]M. S. Anwar, Shalendra Kumar, Faheem Ahmed, Nishat Arshi, Chan Gyu Lee, Bon Heun Koo,“One Step Synthesis of Rutile TiO2 Nanoparticles at Low Temperature”, Journal of Nanoscience and Nanotechnology,Vol 12, 2012, pp. 1555–1558.
[50]Biplab Kumar Roy, Guangneng Zhang, Junghyun Cho, “Titanium Oxide Nanoparticles Precipitated from Low-Temperature Aqueous Solutions: III. Thin Film Properties”, J. Am. Ceram. Soc., Vol 95, 2012, pp. 676–683.
[51]W F Zhang, Y L He, M S Zhang, Z Yin, Q Chen, “Raman scattering study on anatase TiO2 nanocrystals”, J. Phys. D: Appl. Phys., Vol 33, 2000, pp. 912–916.
[52]Caue Ribeiro, Cristiane Vila, Daniel B. Stroppa, Valmor R. Mastelaro, Jefferson Bettini, Elson Longo, Edson R. Leite, “Anisotropic Growth of Oxide Nanocrystals: Insights into the Rutile TiO2 Phase”, J. Phys. Chem. C, Vol 111, 2007, pp. 5871-5875.
[53]陳春英,「二氧化鈦奈米材料生物效應與安全應用」,科學出版社,2010。
[54]K.Y. Foo, B.H. Hameed, “Decontamination of textile wastewater via TiO2/activated carbon composite materials”, Adv. Colloid Interface Sci., Vol 159, 2010, pp. 130–143.
[55]P. Kocbek, K. Teskac, M.E. Kreft, J. Kristl, “Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles”, Vol 6 , 2010, pp. 1908–1917.
[56]J. R. Peralta-Videa, L. Zhao, M. L. Lopez-Moreno, G. de la Rosa, J. Hong, J. L. Gardea-Torresdey, “Nanomaterials and the environment: a review for the biennium 2008–2010”, J. Hazard. Mater., Vol 186, 2011, pp. 1–15.
[57]K.V. Thomas, J. Farkas, E. Farmen, P. Christian, K. Langford, Q. Wu, K.E. Tollefsen, “Effects of dispersed aggregates of carbon and titanium dioxide engineered nanoparticles on rainbow trout hepatocytes”, J. Toxicol. Environ. Health A, Vol 74, 2011, pp. 466–477.
[58]C. W. Dunnill, I. P. Parkin, “Nitrogen-doped TiO2 thin films: photocatalytic applications for healthcare environments”, Dalton Trans., Vol 40, 2011, pp. 1635–1640.
[59]L. Reijnders, “Hazard reduction for the application of titania nanoparticles in environmental technology”, J. Hazard. Mater., Vol 152, 2008, pp. 440–445.
[60]A. P. Popov, A. V. Priezzhev, J. Lademann, R. Myllyl, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens”, J. Phys. D: Appl. Phys., Vol 38, 2005, p. 2564.
[61]H.M. McGee, G.M. Woods, B. Bennett, R.S. Chung, “The two faces of metallothionein in carcinogenesis: photoprotection against UVR-induced cancer and promotion of tumour survival”, Photochem. Photobiol. Sci., Vol 9, 2010, pp. 586–596.
[62]R. Guo, J. Chen, F. Zhu, A. K. Biswas, T. R. Berton, D. L. Mitchell, D. G. Johnson, “E2F1 localizes to sites of UV-induced DNA damage to enhance nucleotide excision repair”, J. Biol. Chem., Vol 285, 2010, pp. 19308–19315.
[63]A. J. Callegari, E. Clark, A. Pneuman, T. J. Kelly, “Postreplication gaps at UV lesions are signals for checkpoint activation”, Proc. Natl. Acad. Sci., Vol 107, 2010, pp. 8219–8224.
[64]L. Dong, J. Wen, E. Pier, X. Zhang, B. Zhang, F. Dong, N. Ziegler, M. Mysz, R. Armenta, R. Cui, “Melanocyte-stimulating hormone directly enhances UVInduced DNA repair in keratinocytes by a xeroderma pigmentosum group A-dependent mechanism”, Cancer Res. Vol 70, 2010, pp. 3547–3556.
[65]Kazusa Matsui, Miki Karasaki, Maiko Segawa, Sang Youn Hwang, Tsutomu Tanaka, Chiaki Ogino, Akihiko Kondo, “Biofunctional TiO2 nanoparticle-mediated photokilling of cancer cells usingUV irradiation”, Med. Chem. Commun., Vol 1, 2010, pp. 209–211.
[66]Juan Xu, Yi Sun, Junjie Huang, Chunmei Chen, Guoyuan Liu Yan Jiang, Yaomin Zhao, Zhiyu Jiang, “Photokilling cancer cells using highly cell-specific antibody–TiO2 bioconjugates and electroporation”, Bioelectrochemistry, Vol 71, 2007, pp. 217–222.
[67]Q. Li, X. Wang, X. Lu, H. Tian, H. Jiang, G. Lv, D. Guo, C. Wu, B. Chen, “The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers”, Biomaterials , Vol 30, 2009, pp.4708–4715.
[68]Y. Chihara, K. Fujimoto, H. Kondo, Y. Moriwaka, T. Sasahira, Y. Hirao, H. Kuniyasu, “Anti-tumor effects of liposome-encapsulated titanium dioxide in nude mice”, Pathobiology , Vol 74, 2007, pp. 353–358.
[69]Yoshimi Harada, Koichi Ogawa, Yutaka Irie, Hitomi Endo, Loreto B. Feril Jr., Tetsuji Uemura, Katsuro Tachibana, “Ultrasound activation of TiO2 in melanoma tumors”, Journal of Controlled Release, Vol 149, 2011, pp. 190–195.
[70]E.A. Rozhkova, I. Ulasov, B. Lai, N.M. Dimitrijevic, M.S. Lesniak, T.A. Rajh, “A high performance nanobio photocatalyst for targeted brain cancer therapy”, Nano Lett., Vol 9, 2009, pp. 3337–3342.
[71]T. Ashikaga, M. Wada, H. Kobayashi, M. Mori, Y. Katsumura, H. Fukui, S. Kato, M. Yamaguchi, T. Takamatsu, “Effect of the photocatalytic activity of TiO2 on plasmid DNA”, Mutat. Res., Vol 466, 2000, pp. 1–7.
[72]Q. Li, X. Wang, X. Lu, H. Tian, H. Jiang, G. Lv, D. Guo, C. Wu, B. Chen, “The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers”, Biomaterials, Vol 30, 2009, pp. 4708–4715.
[73]Y. Chihara, K. Fujimoto, H. Kondo, Y. Moriwaka, T. Sasahira, Y. Hirao, H. Kuniyasu, “Anti-tumor effects of liposome-encapsulated titanium dioxide in nude mice”, Pathobiology, Vol 74, 2007, pp. 353–358.
[74]C. H. Wu, K. S. Huang, J. M. Chern, “Decomposition of acid dye by TiO2 thin films prepared by the sol–gel method”, Ind. Eng. Chem. Res., Vol 45, 2006, pp. 2040–2045.
[75]E. A. Rozhkova, I. Ulasov, B. Lai, N.M. Dimitrijevic, M. S. Lesniak, T. A. Rajh, “A high performance nanobio photocatalyst for targeted brain cancer therapy”, Nano Lett., Vol 9, 2009, pp. 3337–3342.
[76]Jinhao Gao, Bei Zhang, Yuan Gao, Yue Pan, Xixiang Zhang and Bing Xu, “Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction: A Simple Preparation for Multifunctional Nanostructures”, J. Am. Chem. Soc., Vol 129, 2007, p.11928.
[77]Kohsuke Mori, Kohei Sugihara, Yuichi Kondo, Tetsuya Takeuchi, Shotaro Morimoto and Hiromi Yamashita, “Synthesis and Characterization of Core-Shell FePt@Ti-Containing Silica Spherical Nanocomposite as a Catalyst Carrier for Liquid-Phase Reactions”, J. Phys. Chem. C, Vol 112, 2008, p.16478.
[78]Jaemin Kim, Chuanbing Rong, Youngmin Lee, J. Ping Liu and Shouheng Sun, “From Core/Shell Structured FePt/Fe3O4/MgO to Ferromagnetic FePt Nanoparticles”, Chem. Mater., Vol 20, 2008, p.7242.
[79]Jaemin Kim, Chuanbing Rong, J. Ping Liu and Shouheng Sun, “Dispersible Ferromagnetic FePt Nanoparticles”, Adv. Mater., Vol 20, 2009, p.906.
[80]Vismadeb Mazumder, Miaofang Chi, Karren L. More and Shouheng Sun, “Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for theOxygen Reduction Reaction”, J. Am. Chem. Soc., Vol 132, 2010, p.7848.
[81]Jinhao Gao, Gaolin Liang, Bei Zhang, Yi Kuang, Xixiang Zhang, Bing Xu, “FePt@CoS2 Yolk-Shell Nanocrystals as a Potent Agent to Kill HeLa Cells”, J. Am. Chem. Soc., Vol 129, 2007, pp. 1428-1433.
[82]Huili Tang, Chih Hao Yu, William Oduoro, Heyong He, Shik Chi Tsang, “Engineering of a Monodisperse Core-Shell Magnetic Ti-O-Si Oxidation Nanocatalyst”, Langmuir, Vol 24, 2008, pp. 1587-1590.
[83]Warren C. W. Chan, Shuming Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection”, Science, Vol 281, 1998, p.2016.
[84]Doh C. Lee, Frederic V. Mikulec, José M. Pelaez, Bonil Koo, Brian A. Korgel, “Synthesis and Magnetic Properties of Silica-Coated FePt Nanocrystals”, J. Phys. Chem. B, 2006, Vol 110, pp. 11160–11166.
[85]Hitesh G. Bagaria, Earl T. Ada, Mohammed Shamsuzzoha, David E. Nikles, Duane T. Johnson, “Understanding Mercapto Ligand Exchange on the Surface of FePt Nanoparticles”, Langmuir, 2006, Vol 22, pp. 7732–7737.
[86]Hong Yang, JingjingZhang, QiweiTian, HeHua, YongFang, HuixiaWu, ShipingYang, “One-pot synthesis of amphiphilic superparamagnetic FePt nanoparticles and magnetic resonance imaging in vitro”, Journal of Magnetism and Magnetic Materials, Vol 322, 2010, pp. 973–977.
[87]Humin Cheng, Jiming Ma, Zhenguo Zhao, Limin Qi, “Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles”, Chem. Mater., Vol 7, 1995, pp. 663–671.
[88]Shu Yin, Hitoshi Hasegawa, Daisaku Maeda, Masayuki Ishitsuka, Tsugio Sato, “Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution–reprecipitation process”, Journal of Photochemistry and Photobiology A: Chemistry, Vol 163, 2004, pp. 1–8.
[89]Nannan Tao, Jingzhe Zhao, Yupeng Guo, Yanqiu Jiang, Xuefeng Ding, Zichen Wang, “Preparation and characteristics of core-shell rutile titania/wollastonite at room temperature”, Materials Chemistry and Physics, Vol 84, 2004, pp. 58–62.
[90]Kohsuke Mori, Kohei Sugihara, Yuichi Kondo, Tetsuya Takeuchi, Shotaro Morimoto, Hiromi Yamashita, “Synthesis and Characterization of Core-Shell FePt@Ti-Containing Silica Spherical Nanocomposite as a Catalyst Carrier for Liquid-Phase Reactions”, J. Phys. Chem. C, 2008,Vol 112, pp. 16478–16483.
[91]汪建民,「材料分析」,中國材料科學學會,1998。
[92]伍秀青、汪若文,「奈米檢測技術」,國研院儀器科技研究中心,2009。
[93]楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,二十八卷四期,2006 年8 月,第692頁。
[94]Venkatasubramaniam S Kalambur, BumsooHan1, Bruce E Hammer, Thomas W Shield, John C Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications”, Nanotechnology , Vol 16, 2005, p.1221.
[95]Ming Ma, Ya Wu, Jie Zhou, Yongkang Sun, Yu Zhang and Ning Gu, ” Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field”, J. Magn. Magn. Mater., Vol 268, 2004, p.33.
[96]Lingyan Wang,Lingyan Wang, Jin Luo, Quan Fan, Masatsugu Suzuki, Itsuko S. Suzuki, Mark H. Engelhard, Yuehe Lin, Nam Kim, Jian Q. Wang, Chuan-Jian Zhong, “Monodispersed Core−Shell Fe3O4@Au Nanoparticles” J. Phys. Chem. B, 2005, Vol 109, pp. 21593–21601.
[97]M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, C. Kiely, “Synthesis and reactions of functionalised gold nanoparticles”, J. Chem. Soc., Chem. Commun., 1995, pp. 1655-1656.
[98]Qingxia Liu, Zhenghe Xu, “Self-Assembled Monolayer Coatings on Nanosized Magnetic Particles Using 16-Mercaptohexadecanoic Acid”, Langmuir, 1995, Vol 11, pp. 4617–4622
[99]D. H. Lee, R. A. Condrate, W. C. Lacourse, “FTIR spectral characterization of thin film coatings of oleic acid on glasses Part II Coatings on glass from different media such as water, alcohol, benzene and air”, Journal of Materials Science, Vol 35, 2000, pp. 4961-4970.
[100]Marc Henry, Jean Pierre Jolivet, Jacques Livage, “Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation”, Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, Structure & Bonding, Vol 77, 1992, pp. 153-206.
[101]Varghese Swamy, Alexei Kuznetsov, Leonid S. Dubrovinsky, Rachel A. Caruso, Dmitry G. Shchukin, Barry C. Muddle, “Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2”, Physical Review B: Vol 71, 2005, pp. 66 – 85.
[102]Hua Chang, Pei Jane Huang, “Thermo-Raman studies on anatase and rutile”, Journal of Raman Spectroscopy, Vol 29, 1998, pp. 97–102.
[103]R.Lee Penn, Jillian F Banfield, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania”, Geochimica et Cosmochimica Acta, Vol 63, 1999, pp. 1549–1557.
[104] R. Lee Penn, Jillian F. Banfield, “Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals”, Science,Vol 14, 1998, pp. 969-971.
[105]E. R. Leite, T. R. Giraldi, F. M. Pontes, E. Longo, A. Beltrán, J. Andrés, “Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature”, Appl. Phys. Lett., Vol 83, 2003, p. 1566.
[106]Hatefi Kargan, Mousa Aliahmad, Samereh Azizi, “Detecting Ultra-Violet Radiation by Using Titanium Dioxide Nanoparticles”, Soft Nanoscience Letters, Vol 2, 2012.
[107]J. Hu, Z. Zhang, M. Zhao, H. Qin, M. Jiang, “Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films”, Phys. Rev. B, Vol 73, 2006.
[108]A. Sundaresan, R. Bhargavi, Rangarajan, U. Siddesh, C. N. R. Rao, “Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides”, Phys. Rev. B, Vol 74, 2006.
[109]Qurat-Ul-Ain Javed, Fengping Wang, M. Yasir Rafique,Pengbo Yang, and M. Zubair Iqbal, “Conspicuous Ferromagnetic and Optical Properties of Well-Rounded TiO2 Nano Grains Synthesized by Hydrothermal Technique”, Journal ofSpintronics and Magnetic Nanomaterials, Vol. 1, 2012, pp. 34–39.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top