跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 19:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝承志
研究生(外文):Cheng-Chih Hsieh
論文名稱:應用磁性材料檢測沙門氏菌的抗藥性
論文名稱(外文):Utilization of magnetism material for detecting antibiotic resistance of Salmonella
指導教授:黃榮堂黃榮堂引用關係
口試委員:方旭彬侯劭毅
口試日期:2012-01-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:微機電製程技術奈米金磁珠梳狀電極抗藥性
外文關鍵詞:MENSnano-Au/Fe3O4 particlesinterdigitated electrodeantibiotic resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全世界包含台灣,沙門氏菌是幼兒腸道炎中常見的病菌;而現行檢測沙門氏菌濃度數量及其抗藥性需耗費三至五天的時間。若能早期檢測出檢體是否具有抗藥性,不但能夠幫助醫師選擇適當的抗生素,也可以避免抗生素濫用的情形。本研究之目的為發展簡單、快速之檢測方式好取代早期檢測細菌及其抗藥性之方式,利用微機電製程技術製作用於實驗之微粒檢測的裝置晶片。本研究使用新式複合材料-奈米金磁珠,使其接合與沙門氏菌具專一性之抗體。並利用微機電製程技術,製作含有鎳金屬之平行梳狀電極。運用磁力的作用,有效的從糞便中分離出沙門氏菌,達成純化的效果。且利用磁力使鎳金屬具有磁性並吸引已接上沙門氏菌之奈米金磁珠,再以阻抗分析儀進行組抗量測。藉由量測結果可以判斷該檢體沙門氏菌的濃度,而後可加入抗生素進行其抗藥性檢測。加入抗生素後做養菌動作並量測其阻抗值,藉由阻抗值的變化來判斷抗藥性與否。

Asia, including Taiwan, Salmonella is one of the common enteric pathogenic bacteria in children all over the world including Taiwan. Detecting of the concentration and resistance of Salmonella takes three to five days, which is time-consuming. Early detection of antibiotic resistant can not only help doctors to choose appropriate antibiotics, but also avoid the abuse of antibiotics. The purpose of this study is to develop a simple and rapid detection method for early detection of bacteria and antibiotic resistance which can replace the traditional way, using Micro Electro Mechanical Systems process technology for production of the bio-chip particle detection. In this study, we use the new composite materials - nano Au/Fe3O4 particles for bonding the specificity of the antibody with Salmonella. Using of MEMS process technology, we produced the nickel parallel interdigitated electrodes. Using magnetic force, we can effectively isolate Salmonella from stools to reach the effect of purification. Utilization of magnet provides the nickel electrodes with magnetic which attract the nano Au/Fe3O4 particles connected to the Salmonella and then the impedance can be measured on the bio-chip. According to the results, we can measure the concentration of Salmonella in the samples, and add antibiotics to test its antibiotic resistance. Following addition of antibiotics, culture of bacteria and impedance measurement of the antibiotic-contained bacterial solution, the antibiotic resistance of the selected bacteria can be determined according to the alterations of impedance.

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 微機電系統 1
1.3 生物微粒檢測技術 2
1.4 生物微粒分離 5
1.5 沙門氏菌抗藥性及抗生素探討 8
1.6 研究目的 9
第二章 文獻回顧與原理 12
2.1 文獻回顧 12
2.2 介電力原理 16
2.3 奈米磁珠與磁學原理 21
2.3.1 奈米磁珠 21
2.3.2 磁學原理 22
第三章 晶片設計與製作 25
3.1 晶片設計 25
3.2 光罩設計與製作 25
3.3 晶片製作 26
3.3.1 塑膠晶片 27
3.3.2 玻璃晶片 27
3.3.3 黃光製程 29
3.4 檢測晶片製作步驟 36
3.4.1 塑膠晶片製作步驟 36
3.4.2 玻璃晶片製作步驟 37
第四章 實驗設備與備置 39
4.1 實驗架構 39
4.2 實驗設備 40
4.2.1 實驗儀器 40
4.3 實驗材料 44
4.3.1 奈米金磁珠 44
4.3.2 奈米金磁珠製作流程 44
4.3.2.1 奈米磁珠 45
4.3.2.2 奈米金磁珠 45
4.3.3 奈米金磁珠與抗體接合 46
4.3.4 沙門氏菌(Salmonella) 47
第五章 實驗與結果 49
5.1 奈米金磁珠製作結果 49
5.1.1 奈米金磁珠電子顯微鏡圖49
5.1.2 奈米金磁珠組成元素分析 50
5.2 抗體與奈米金磁珠接合測試 52
5.3 檢測計算 53
5.4 鋁電極抗藥性測試 55
5.4.1 實驗步驟 55
5.4.2 實驗結果 56
5.5 鎳電極磁性測試 58
5.6 鎳電極抗藥性測試 61
5.6.1 量測參數設定 61
5.6.2 濃度實驗 63
5.6.3 實驗步驟 63
5.6.4 實驗結果 64
第六章 結論與未來展望 66
6.1 結論 66
6.2 未來工作與展望 67
6.2.1 多目標抗藥性量測晶片 67
6.2.2 未來展望 68
參考文獻 70
作者簡介 74


[1]楊龍杰,認識微機電,滄海出版社,2001年。
[2]M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger et al.” An integrated nanoliter DNA analysis device”, Science, 1998, pp.484-487.
[3]I. Schneegaß, J. M. Köhler, “Flow-Through Polymerase Chain Reactions in Chip Thermocycles”, Reviews in Molecular Biotechnology 82, 2001, pp.101-121.
[4]W.H. Coulter, (1953) US Patent No. 2656508.
[5]W. H. Coulter,”High speed automatic blood cell counter and cell size analyzer,” Proc. Natl. El. Conf. 12, 1956, pp.1034-1040.
[6]H.A. Crissman and J.A. Steinlamp,”Rapid simultaneous measurement of DNA, protein and cell volume in single cells from large mammalian cell populations," J.Cell Biol, Vol 59, 1973, pp.766.
[7]W. H. Coulter,”High speed automatic blood cell counter and cell size analyzer,” Proc. Natl. El. Conf. 12, 1956, pp.1034-1040.
[8]J. R. Webster, M. A. Burns, D. T. Burke, C. H. Mastrangelo, “Monolithic Capillary Electrophoresis Device with Integrated Fluorescence Detector,” Anal. Chem, 2001, pp.1622-1626.
[9]回寶珩,新式微型細胞計數器之設計、製作與應用,碩士論文,國立成功大學工程科學系,台南,2003年。
[10]Paul T Sharpe, “Methods of cell separation”, Elsevier, 1988, 23-26.
[11]H. A. Pohl, Dielectrophoresis, MA: Cambridge University Press, London, 1978.
[12]盧柏樑,抗生素與抗藥性,高醫醫訊月刊第二十二卷第十一期,高雄,2003
[13]Wright J.G., Tengelsen L.A., Smith K.E., Bender J.F., Frank R.K., Grendon J.k.,Rice D.H., Thiessen A.M., Gilbertson C.J., Sivapalasingam S., Barrett T.J.,Besser T.E., Hancock D.D., Angulo F.J. Multiantibiotics-resistant Salmonella.
[14]國家衛生研究院 第 161 期 2006-08-02。
[15]T.B. Jones, Electromechanics of Particles, Cambridge University Press, London, 1995.
[16]Michael P Hughes and Hywel Morgan, “Dielectrophoretic trapping of single sub-micrometre scale bioparticles,” J.Phys. D: Appl. Phys.31,1998, pp.2205-2210.
[17]F.F. Becker, X-B. Wang, Y. Huang, Pethig, R., Vykoukal, J., and Gascoyne, P.R.C.. “Separation of human breast cancer cells from blood by differential dielectric affinity” Proc. Natl. Acad. Sci., USA. 92:860-864, (1995).
[18]Haibo Li and Rashid Bashir, “Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated device with interdigitated electrodes,” sensors and actuator B 86(2002) pp.215-221
[19]Junya Suehiro, Akio Ohtsubo, Tetsuji Hatano, Masanori Hara, “Selective detection of bacteria by a dielectrophoretic impedance measurement method using an antibody-immobilized electrode chip,” Sensors and Actuators B 119 (2006) pp.319–326
[20] Liju Yang, Yanbin Li, “Detection of viable Salmonella using microelectrode–based capacitance measurement coupled with immunomagnetic separation”, Journal of Microbiological Methods 10 64 (2006) 9–16.
[21]Junya Suehiro, Ryuichi Yatsunami, Ryo Hamada and Masanori Hara,“Quantitative estimation of biological cell concentration suspended in aqueous medium by using dielectrophoretic impedance measurement method” Appl. Phys. 32 (1999) 2814–2820. Printed in the UK.
[22]Junya Suehiro, Masanori Shutou, Tetsuji Hatano and Masanori Hara, “High sensitive detection of biological cells using dielectrophoretic impedance measurement method combined with electropermeabilization.” Sensors and
Actuators B: Chemical, Volume 96, Issues 1-2, 15 November 2003, pp.144-151.
[23]Junya Suehiro, Ryo Hamada, Daisuke Noutomi, Masanori Shutou and Masanori Hara, “Selective detection of viable bacteria using dielectrophoretic impedance measurement method.” Journal of Electrostatics, Volume 57, Issue
2, February 2003, pp. 157-168.
[24]Junya Suehiro, Daisuke Noutomi, Masanori Shutou and Masanori Hara,“Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen–antibody reaction.” Journal of
Electrostatics, Volume 58, Issues 3-4, June 2003, pp. 229-246.
[25]Junya Suehiro, Daisuke Noutomi, Masanori Shutou and Masanori Hara,“Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen–antibody reaction.” Journal of
Electrostatics, Volume 58, Issues 3-4, June 2003, pp. 229-246.
[26]Madhukar Varshney, Yanbin Li,” Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7 in food samples” Biosensors and
Bioelectronics 22 (2007) 2408–2414.
[27]Jiangrong Qian, Jiangrong Qian, ”Micromagnetic selection of aptamers in microfluidic channels” proceddings of the the National Academy of Sciences, vol. 106, no 9, 2009, pp. 2989-2994
[28]Jiangrong Qian, Jiangrong Qian, ”Generation of Highly Specific Aptamers via Micromagnetic Selection” Analytical Chemistry, vol. 81, no. 13, 2009, pp. 5490-5495
[29]尹邦躍,奈米時代,五南,台北,2002年。
[30]曾偉程,複合式光磁性奈米核殼結構結合生物型標示之製造方法,碩士論文,國立臺北科技大學,台北,2008年。
[31]鄭永平,磁性流體密封原理與設計,北京國防工業出版社。
[32]Wei Wu1, Quanguo He1, Hong Chen1, Jianxin Tang1 and LiboNie, ”Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles.” IOPscience, Nanotechnology 18 (2007) 145609 (8pp).
[33]Anindya Pradhan, Robin C. Jones, Daniela Caruntu, Charles J. O’Connor, Matthew A. Tarr ”Gold–magnetite nanocomposite materials formed via sonochemical methods” Ultrasonics Sonochemistry 15 (2008) 891–897
[34]CUI Yali, HUI Wenli, SU Jing, WANG Yani & CHEN Chao, “Fe3O4/Au composite nano-particles and their optical properties.” Science in China Ser. B Chemistry 2005 Vol.48 No.4 273—278.
[35]陳仁英,奈米級粉體之研磨及其分散技術之探討,工業材料雜誌第205期,P.160-167,2004。
[36]余華偉,以奈米金粒子結合抗體檢測特定病菌抗藥性之生物晶片,碩士論文,國立臺北科技大學,台北,2008年。
[37]王國成,以奈米金磁珠(Au/Fe3O4)結核抗體檢測特定病菌濃度及抗藥性之生物晶片,國立臺北科技大學,台北,2009年。
[38]L. R. INGERSOLL, S. S. DE VINNEY ”Non-Magnetic Films of Nickel” Physical Review (1925) 26 (1), pp. 86-91


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top