跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李相甫
研究生(外文):Hsiang-Fu Li
論文名稱:具矽穿孔原子晶片之開發與製作應用於超高真空原子光學元件
論文名稱(外文):The development and fabrication of atom chips with through silicon via for ultra-high-vacuum atom optics cell
指導教授:莊賀喬莊賀喬引用關係
口試委員:林育如林郁欣楊啟榮韓殿君
口試日期:2012-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:玻色-愛因斯坦冷凝聚Through Silicon Via (TSV)感應耦合電漿離子蝕刻(ICP-RIE)Bottom-up陽極接合Ultra-High-Vacuum
外文關鍵詞:Bose-Einstein Condensation(BEC)Through Silicon Via (TSV)Bottom-upICP-RIEanodic bondingUltra-High-Vacuum
相關次數:
  • 被引用被引用:2
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
如何將玻色-愛因斯坦冷凝聚(Bose-Einstein Condensation, BEC)系統微小化已成為目前重要的課題之一,本文在這樣的前提下引入目前最熱門的矽穿孔 (Through Silicon Via, TSV)技術來製作具饋通孔的原子晶片,再將製做完成後的晶片與Pyrex玻璃管做陽極接合封裝,並使原子晶片與玻璃管能夠在超高真空環境(10-10 Torr)下透過TSV通高電流至內部的導線上且能同時維持超高真空 (Ultra-High-Vacuum, UHV),因此如何提高晶片中TSV的導電及真空良率為本研究的最主要目標。使用由下而上 (Bottom-up)的電鍍方式填孔後,再利用微製程技術在晶片的正、反面鍍金屬薄膜、微影、蝕刻,最後使用陽極接合技術將矽基板的晶片與Pyrex方管做接合,陽極接合製程需要高溫 (350˚C)及高電壓 (1000V),在高溫的條件下,TSV內的電鍍銅柱及矽晶片的熱膨脹量相差甚大,因此如何在陽極接合後使電鍍填孔的銅柱不與矽基板分離且可以抵擋超高真空即是本研究的重點。在晶片使用上TSV也要能夠承受高電流,避免通高電流時TSV先燒斷形成斷路,在本研究中製作了三種不同直徑的TSV,包含100μm、70μm、50μm,而這三種中任一個TSV皆能在真空環境 (70 Torr)及一般大氣環境通17安培的電流後而不燒斷,因此輕易地通過連續5安培 (Amps)的門檻條件,而通過17安培的高電流後TSV仍然能夠通過氦氣測漏的檢測,並且在完成陽極接合後可以抽至超高真空 (8×10-10 Torr)。另外,晶片製作中凸起的TSV蘑菇頭卻會因為蒸鍍時的階梯覆蓋效應而影響製程上的良率,在經過製程改善後,TSV的導電良率能從50%增加到100%,真空洩漏良率能從75%上升至81.25%。

How to miniaturize the BEC system has become one of the important topics in the atomic physics field. In this thesis, we integrated the most popular TSV technique to make the feedthrough atom chips which will be anodically bonded to a Pyrex glass cell. Then the high current can be applied to the metal wires on the atom chip through the TSV under ultra-high vacuum environment (10-10 Torr) to produce the magnetic field without any leaks. Thus how to improve the conductive and vacuum yields of TSV on atom chips is also the important goal of this study. The feedthrough vias are filled by the bottom-up copper electroplating. The front side metal wires and back side bonding pads on atom chips can be patterned by the general lithography process. Then the atom chip will be anodically bonded to a Pyrex glass cell under the temperature of 350°C and electrical field of 1000 volts. The thermal expansion issue between the electroplated TSV and the silicon wafer under high temperature (350°C) environment is also discussed in the later section. In addition, the TSV of atom chips also has to withstand high current (at least 5 Amps) to generate the adequate magnetic field for BEC experiments. Hence, three different TSV sizes (100μm, 70μm and 50μm) have been fabricated and tested for continuously running a maximum current of 17 Amps without burnout both under vacuum(70 Torr) and in air. Thus it easily passed the threshold conditions of the 5 Amps current for BEC experiments. After high current test, the TSV of atom chips can also pass a helium leaking detection and can be pumped to the ultra-high vacuum (8×10-10 Torr) after anodic bonding process. Moreover, the fabrication yield will be affected by the electroplated TSV plug due to the step coverage effect during the evaporation process. After a process improvement, the TSV conductive and vacuum yields are raised from 50% to 100% and 75% to 81.25%, respectively.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
1.1原子捕集晶片的發展 1
1.2文獻回顧 2
1.2.1具真空饋通技術的原子捕集晶片 2
1.2.2 TSV (Through Silicon via)技術 5
1.3 研究動機與目的 10
1.4 論文架構 11
第二章 原子晶片的基礎理論與模擬設計 12
2.1 磁場模擬及微磁阱的晶片設計 12
2.2 單一長直導線與單一外加均勻磁場 13
2.3 U型導線與一外加磁場 15
2.4 Z型導線與兩個外加磁場 19
第三章 具矽穿孔的原子晶片製作 22
3.1 具矽穿孔的原子晶片之光罩設計 23
3.2 晶片製作 24
3.3 微影 (Photolithography)製程 26
3.4 PVD (Physical Vapor Deposition)製程 28
3.5 蝕刻(Etch)製程 30
3.5.1 濕式蝕刻 金屬薄膜蝕刻 31
3.5.2 乾式蝕刻 RIE蝕刻 31
3.5.3 乾式蝕刻 ICP-RIE蝕刻 33
3.6 電鍍製程 34
3.6.1 電鍍設備 35
3.6.2 電流模式 37
3.6.3 電鍍液及添加劑 38
3.6.4 試片準備 39
3.6.5 電鍍技術 39
第四章 檢測與封裝 41
4.1 晶片檢測 41
4.1.1 TSV電阻 41
4.1.2 TSV電性測量 43
4.1.3 TSV真空洩漏測量 46
4.2 晶片封裝 48
4.2.1 陽極接合 48
4.2.2 超高真空檢測 52
第五章 結果與討論 54
5.1 表面處理 54
5.2 TSV電鍍填孔 55
5.3 晶片與導電基板分離 57
5.4 TSV良率提升 59
第六章 結論與未來展望 69
6.1 結論 69
6.2 未來展望 69
參考文獻 71


[1]M. H. Anderson and J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, "Observation of Bose-Einstein condensation in a dilute atomic vapor," Science, 269, 198, (1995).
[2]http://cua.mit.edu/ketterle_group/research.htm
[3]D. Muller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt and E.A. Cornell, "Guiding neutral atoms around curves with lithographically patterned current-carrying wires," Phys. Rev. Lett., vol. 83, pp. 5194, (1999).
[4]H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann and C. Zimmermann, "Bose-Einstein condensation in a surface microtrap," Phys. Rev. Lett., vol. 87, 230401, (2001).
[5]S. W. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. M. Bright, K. Reichel, T. W. Hansch and D. Z. Anderson," Atom-chip Bose-Einstein condensation in a portable vacuum cell," Phys. Rev. A, vol. 70, 053606, (2004).
[6]M. Wilzbach, D. Heine, S. Groth,X. Liu, T. Raub, B.Hessmo, and J. Schmiedmayer, "A simple integrated single atom detector," Optics Letters, Vol. 34, No. 3, pp.259-261, (2009).
[7]H.C.(Rick) Chuang, D. Z. Anderson, and V. M. Bright," The fabrication of through-wafer interconnects in silicon substrates for ultra-high-vacuum atom-optics cells," Journal of Micromechanics And Microengineering, vol. 18, 045003, (2008).
[8]K. Fujimoto, N. Maed , H. Kitada , K. Suzuki, T. Nakamura , and T. Ohba , “TSV (through silicon via) interconnection on wafer-on-a-wafer (wow) with mems technology”, 15th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS’ 09), pp. 1877 - 1880, (2009).
[9]N T Nguyen, E Boellaard, N P Pham, V G Kutchoukov, G Craciun and P M Sarro, “Through-wafer copper electroplating for three-dimensional interconnects”, Journal of Micromechanics and Microengineering, vol.12, pp.395–399, (2002).
[10]W. P. Dow, H. H. Chen, M. Y. Yen, W. H. Chen, K. H. Hsu, P. Y. Chuang, H. Ishizuka, N. Sakagawa, and R. Kimizukad, “Through-Hole Filling by Copper Electroplating”, Journal of The Electrochemical Society, 155 12 D750-D757 (2008).
[11]J. H. Wu, J. Scholvin, and J. A. del Alamo, “A Through-Wafer Interconnect in Silicon for RFICs”, IEEE Transactions on electron devices, vol. 51, no. 11, November (2004).
[12]P. Dixit and J. Miao , “Aspect-Ratio-Dependent Copper Electrodeposition Technique for Very High Aspect-Ratio Through-Hole Plating” , Surface and Coatings Technology vol.173 285–292, (2003).
[13]H. Yoshida, M. Sone, A. Mizushima, K. Abe, X. Tang Tao, S. Ichihara, and S. Miyata, “Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution”, Journal of Chemistry Letters, vol. 31, no. 11, pp.1086-1087, (2002).
[14]T. F. Mark Chang , T. Tasaki, C. Ishiyama, M. Sone “Void-free micro-pattern of nickel fabricated by electroplating with supercritical carbon dioxide emulsion”, Microelectronic Engineering 88 2225–2228, (2011).
[15]N. Shinoda, T. Shimizu, T. Mark Chang, A. Shibata, M. Sone, ”Filling of nanoscale holes with high aspect ratio by Cu electroplatingusing suspension of supercritical carbon dioxide in electrolyte with Cu particles”, Microelectronic Engineering (2012) (in press).
[16]N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndi, R. M. Westervelt and M. Prentiss, "Guiding neutral atoms on a chip," Phys. Rev. Lett., vol. 84, pp. 1124, (2000).
[17]M. Horikoshi, K. Nakagawa," Atom chip based fast production of Bose–Einstein condensate," Appl. Phys. B 82, 363–366 (2006).
[18]H. C. Chuang, C. W. Weng and H. F. Li, “Design, microfabrication and characterization of planarized multilayer atom chips with enhanced heatdissipation”, Journal of Micromechanics And Microengineering, 21 125009.9pp, (2011).
[19]Owen Cherry, “Fabrication of an Atom Chip for Rydberg Atom-Metal Surface Interaction Studies”, Master thesis, University of Waterloo (2007).
[20]J. Reichel, W. Hansel, and T. W. Hansch," Atomic Micromanipulation with Magnetic Surface Traps, " Phys. Rev. Lett. vol.83, pp.3398 (1999).
[21]J. Reichel, W. Hansel, P. Hommelhoff, and T. W. Hansch," Microelectromagnets for trapping and manipulating ultracold atomic quantum gases," Appl. Phys. B: Lasers Opt. vol.72, pp.81 (2001).
[22]http://www2.ess.nthu.edu.tw/~fangang/download/Micro%20System%20Fabrication%20and%20Experiment/LEC6-PVD.pdf
[23]http://www2.ess.nthu.edu.tw/~fangang/download/Micro%20System%20Fabrication%20and%20Experiment/lec7-Dry etching technique.doc
[24]翁崇文,單層/多層原子晶片的開發與製作應用於原子物理領域,碩士論文,國立臺北科技大學機電整合研究所,台北,(2012).
[25]M.S. Chandrasekar, M. Pushpavanam , "Pulse and pulse reverse plating—Conceptual, advantages and applications", Electrochimica Acta 53 3313–3322, (2008).
[26]電鍍技術手冊,日本全國鍍金材料組合聯合會,1996年出版
[27]S. Miura, H. Honma, “Advanced copper electroplating for application of electronics” ,Surface Coating Technology 169-170 (2003) 91.
[28]W. P. Dow, C. W. Liu, “Studies of Microvia Filling Mechanism and A Novel Cu Plating Formula”, J. Electrochem. Soc. 153 C190, (2006)
[29]K. Kondo, N. Yamakawa, Z. Tanaka, K. Hayashi, “Copper damascene electrodeposition and additives”, J. Electroanal. Chemical 559, 137, (2003)
[30]W. P. Dow, M. Y. Yen, C. W. Liu, C. C. Huang, “Enhancement of filling performance of a copper plating formula at low chloride concentration”, Electrochimica Acta 53, 3610–3619 (2008).
[31]劉庭宇,電流模式與界面活性劑對超臨界電鍍鎳鍍層之影響探討,碩士論文,國立臺北科技大學機電整合研究所,台北,(2012)


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top