跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭政豐
研究生(外文):Cheng-Fong Kuo
論文名稱:不同腰椎人工椎間盤設計之運動學及力動學研究
論文名稱(外文):Study of the Kinematics and Kinetics of Different Lumbar Total Disc Replacement Designs
指導教授:陳文斌陳文斌引用關係莊仕勇
口試委員:戴金龍曾永輝
口試日期:2011-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:全人工椎間盤置換腰薦椎複合測試法
外文關鍵詞:Total disc replacementLumbosacral spineHybrid test method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全人工椎間盤置換為臨床上治療椎間盤退化病症的手術方式,該植體除了可舒緩背痛症狀,亦可保留手術當節之活動度,以改善傳統骨融合手術所引發的鄰近節退化問題。臨床使用的人工椎間盤裝置有許多種類,但不同的植體設計對脊椎的生物力學響應仍尚未明確。因此,本研究的第一部分,將建立三維之腰薦椎有限元素模型,並以複合測試方式比較植入三種不同設計之人工椎間盤後,各植體對手術當節及鄰近節的活動度、瞬時旋轉中心與小面關節負載影響。
透過脊椎的體外試驗能了解脊椎的功能特性,亦或評估相關手術裝置對脊椎之生物力學影響。因此,在第二部分的研究中,將發展一套新型脊椎測試平台並設立完整實驗流程,此測試平台可提供脊椎試片無拘束之純力矩進行三維準靜態之力學測試,以模擬脊椎前屈、後彎、側彎及扭轉運動。在首次的體外實驗中,以一副豬腰椎試片(L2-L6)進行彎曲測試,並評估此脊椎測試平台對實驗結果之重現性表現。
在第一部分的有限元素分析結果顯示,人工椎間盤置換可避免鄰近節的代償現象。而在手術節的結果中,各植體對前屈的活動度並無明顯影響,但在後彎及側彎的活動度卻明顯增加;在扭轉負載下,各植體的活動度結果有顯著差異,其中在Maverick上升39%,但Flexicore與Charité則造成活動度的下降。各植體對手術節的瞬時旋轉中心有較大的影響;尤其在扭轉負載下,各植體的瞬時旋轉中心有明顯的移動情況,尤其Charité與Flexicore的有較大的移動量。在後彎、側彎及扭轉下,Maverick相較於Flexicore與Charité有較低的小面關節負載。當椎節承受跟隨負載時,具有大曲率半徑且旋轉中心偏後設計的Maverick可避免手術當節產生過大的前凸角度;反之,小曲率半徑的Flexicore與具有活動式襯墊的Charité則會增加手術節的前凸角度,進而導致小面關節接觸並增加負載量。由於非拘束式植體Charité的旋轉中心在負載過程中可產生移動以減少小面關節的剪力負載,因此,Charité在手術節的小面關節負載低於Flexicore。於研究結果顯示三種人工椎間盤植體皆會造成手術節的運動學行為改變,並增加手術節的小面關節負載。然而,Maverick在手術當節有較低的小面關節負載,可減少術後產生小面關節退化之風險。
第二部分的研究中,已完成脊椎測試平台之初步設計以及實驗流程之規劃。而體外實驗的結果發現在各彎曲負載下,椎節的活動度結果皆具有良好的重現性。此測試平台可提供未來進行手術方式規劃亦或植體裝置開發之使用。


Total disc replacement (TDR) have been used to clinics as a surgery treatment for disc degeneration disease. Except to alleviate back pain, maintain the spinal segment motion at operated level may reduce the incidence of adjacent segment degeneration that related to spinal fusion. There are several TDR devices in clinical use. However, the biomechanical effects of the different TDR designs were not fully understood. Therefore, a three-dimensional finite element model of the lumbosacral spine was created to compare of the range of motion (ROM), instantaneous center of rotation (ICR) and facet joint force (FJF) at operated and adjacent levels after three different TDR devices implantation by using a Hybrid test method.
In vitro biomechanical testing of spine has been performed to help understand the function of the spine or assess the biomechanical efficiency of spinal surgical procedures. Therefore, a new spinal testing apparatus and experimental procedure were developed to apply a non-constraining pure moment to a quasi-static mechanical testing under flexion/extension, lateral bending and torsion. A porcine lumbar segment (L2-L6) was used to evaluate the measurement reproducibility of the spinal testing device.
In the first study, the FEA results showed the TDR can be used to prevent the motion compensation at adjacent levels. Except in flexion, the ROMs of all three implant designs in the operated level were significantly increased during extension and lateral bending. For torsion, the different implant designs showed a strongly differences of percentage changes in ROM. Only the Maverick caused increase of 39%, while the Charité and Flexicore lead to decrease of ROM. The positions of ICR were altered at the operated level after TDR insertion. For torsion, all implants caused an obvious migration pattern of ICR, ecpecially for implantation of Charité and Flexicore. The FJF predicted by the Maverick is smaller than the implantation of Charité and Flexicore during extension, lateral bending and torsion. Under the compression follower preload, the Maverick with the posterior COR (center of rotation) and larger radius could prevent the exaggerated lordosis at operated level. In constast, the Flexicore with small radius and the Charité with mobile core might lead to increase the lordosis angle and caused a high FJF. However, unconstrained configuration of the Charité with a moving COR lead to a lower facet shear force. Therefore, the FJF of the Charité was less than the Flexicore at operated level. In our finding, all three different TDR devices lead to considerably alter the kinematics and increase the FJF at operated level, Furthermore, the Maverick implant showed a smaller FJF may avoid the facet joint degeneration after implantation.
In the second part of this study, the spinal testing apparatus and the experimental procedure were developed and showed a good reproducibility of ROM for all loading conditions. The testing apparatus can be widely put into practical applications, such as surgery planning and prosthesis development.


摘 要 I
Abstract III
致謝 V
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1前言 1
1.2研究背景 2
1.2.1椎間盤生理構造與力學特性 2
1.2.2椎間盤退化 4
1.2.3脊椎融合手術 5
1.2.4人工椎間盤置換 6
1.3市售腰椎人工椎間盤之介紹 8
1.3.1非拘束式人工椎間盤 (Unconstrained type TDR) 8
1.3.2拘束式人工椎間盤 (Constrained type TDR) 9
1.4文獻回顧 11
1.4.1人工椎間盤置換臨床表現相關文獻 11
1.4.2體外實驗相關研究 13
1.4.2.1脊椎測試平台(Spinal testing apparatus) 13
1.4.2.2人工椎間盤之體外實驗(TDR in-vitro testing) 15
1.4.3有限元素法相關研究 16
1.5研究目的 18
第二章 材料與方法 19
2.1腰椎人工椎間盤生物力學研究 19
2.1.1研究流程 19
2.1.2有限元素模型之建構 20
2.1.2.1腰薦椎有限元素模型 20
2.1.2.2人工椎間盤模型 22
2.1.3群組規劃 24
2.1.4接觸條件與邊界條件設定 24
2.1.4.1接觸條件設定 24
2.1.4.2邊界條件設定 24
2.1.5評估參數 26
2.1.5.1椎節活動度(Range of motion, ROM) 26
2.1.5.2椎體瞬時旋轉中心(Instantaneous center of rotation, ICR) 27
2.1.5.3小面關節接觸負載(Facet joint force, FJF) 28
2.1.6有限元素模型之收斂測試 28
2.2脊椎生物力學測試平台開發 30
2.2.1測試平台架構 30
2.2.2試片準備 31
2.2.3生物力學測試 31
2.2.4數據與分析 33
第三章 結果 34
3.1有限元素分析 34
3.1.1腰薦椎模型驗證 34
3.1.2椎節活動度(Range of motion, ROM) 35
3.1.3瞬時旋轉中心(Instantaneous center of rotation, ICR) 39
3.1.4小面關節負載(Facet joint force, FJF) 41
3.2體外實驗 44
3.2.1椎節活動度 44
第四章 討論 47
4.1人工椎間盤對活動度之影響 48
4.2人工椎間盤對瞬時旋轉中心之影響 49
4.3人工椎間盤對小面關節負載之影響 51
4.3.1活動度與小面關節負載之探討 52
4.3.2瞬時旋轉中心與小面關節負載之探討 54
4.4有限元素分析之限制條件 56
4.5生物力學測試平台開發 57
4.5.1體外實驗 58
4.5.2限制條件 58
第五章 結論與未來展望 60
5.1結論 60
5.2未來展望 61
參考文獻 62
附錄 70
附錄 1:脊椎體外實驗流程 70



[1]M. van Tulder, A. Malmivaara, R. Esmail, and B. Koes, "Exercise therapy for low back pain: a systematic review within the framework of the cochrane collaboration back review group," Spine (Phila Pa 1976), vol. 25, 2000, pp. 2784-96.
[2]K. M. C. Cheung, "The relationship between disc degeneration, low back pain, and human pain genetics," Spine Journal, vol. 10, 2010, pp. 958-960.
[3]J. D. Schlegel, J. A. Smith, and R. L. Schleusener, "Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions," Spine, vol. 21, 1996, pp. 970-981.
[4]R. D. Guyer, P. C. McAfee, R. J. Banco, F. D. Bitan, A. Cappuccino, F. H. Geisler, S. H. Hochschuler, R. T. Holt, L. G. Jenis, M. E. Majd, J. J. Regan, S. G. Tromanhauser, D. C. Wong, and S. L. Blumenthal, "Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: Five-year follow-up," Spine Journal, vol. 9, 2009, pp. 374-386.
[5]P. P. Raj, "Intervertebral disc: anatomy-physiology-pathophysiology-Treatment," Pain Practice, vol. 8, 2008, pp. 18-44.
[6]M. B. Coventry, R. K. Ghormley, and J. W. Kernohan, "The intervertebral disc: its microscopic anatomy and pathology: Part II. changes in the intervertebral disc concomitant with age," The Journal of Bone and Joint Surgery, vol. 27, 1945, pp. 233-247.
[7]S. R. Bibby, D. A. Jones, R. B. Lee, J. Yu, and J. P. G. Urban, "The pathophysiology of the intervertebral disc," Joint Bone Spine, vol. 68, 2001, pp. 537-42.
[8]M. Haefeli, F. Kalberer, D. Saegesser, A. G. Nerlich, N. Boos, and G. Paesold, "The course of macroscopic degeneration in the human lumbar intervertebral disc," Spine, vol. 31, 2006, pp. 1522-1531.
[9]A. Fremont and M. D. chandler, "Spinal fusion operations in the treatment of low back pain and sciatic pain," The Journal of the American Medical Association, vol. 93, 1929, pp. 1447-1450.
[10]S. Joseph and M. D. Barr, "Ruptured intervertebral disc and sciatic pain," The Journal of Bone and Joint Surgery, vol. 29, 1947, pp. 429-437.
[11]J. W. Brantigan, A. D. Steffee, M. L. Lewis, L. M. Quinn, and J. M. Persenaire, "Lumbar interbody fusion using the Brantigan I/F Cage for posterior lumbar interbody fusion and the variable pedicle screw placement system - Two-year results from a Food and Drug Administration Investigational Device Exemption Clinical Trial," Spine, vol. 25, 2000, pp. 1437-1446.
[12]K. S. Cho, S. G. Kang, D. S. Yoo, P. W. Huh, D. S. Kim, and S. B. Lee, "Risk Factors and Surgical Treatment for Symptomatic Adjacent Segment Degeneration after Lumbar Spine Fusion," Journal of Korean Neurosurgical Society, vol. 46, 2009, pp. 425-430.
[13]G. Ghiselli, J. C. Wang, N. N. Bhatia, W. K. Hsu, and E. G. Dawson, "Adjacent segment degeneration in the lumbar spine," Journal of Bone and Joint Surgery-American Volume, vol. 86A, 2004, pp. 1497-1503.
[14]U. Fernstrom, "Arthroplasty with intercorporal endoprothesis in herniated disc and in painful disc," Acta Chir Scand Suppl, vol. 357, 1966, pp. 154-9.
[15]T. Takigawa, A. A. E. Orias, H. S. An, S. Gohgi, R. K. Udayakumar, K. Sugisaki, R. N. Natarajan, M. A. Wimmer, and N. Inoue, "Spinal Kinematics and Facet Load Transmission After Total Disc Replacement," Spine, vol. 35, 2010, pp. E1160-E1166.
[16]R. C. Huang, F. P. Girardi, F. P. Cammisa, and T. M. Wright, "The implications of constraint in lumbar total disc replacement," Journal of Spinal Disorders & Techniques, vol. 16, 2003, pp. 412-417.
[17]D. Spine. http://www.depuy.com/about-depuy/depuy-divisions/depuy-spine.
[18]J. W. German and K. T. Foley, "Disc arthroplasty in the management of the painful lumbar motion segment," Spine, vol. 30, 2005, pp. S60-S67.
[19]L. Médical. http://www.ldrmedical.com/mobidisc.php?
[20]D. Grob, "[Lumbar total disc replacement]," Orthopade, vol. 38, 2009, pp. 93-9; quiz 100-1.
[21]H. H. Mathews, J. C. Lehuec, T. Friesem, T. Zdeblick, and L. Eisermann, "Design rationale and biomechanics of Maverick Total Disc arthroplasty with early clinical results," Spine Journal, vol. 4, 2004, pp. 268S-275S.
[22]A. Valdevit and T. J. Errico, "Design and evaluation of the FlexiCore metal-on-metal intervertebral disc prosthesis," Spine Journal, vol. 4, 2004, pp. 276S-288S.
[23]K. A. Pettine and C. Schlicht, "F.D.A. I.D.E. Prospective randomized comparison of three lumbar artificial disc replacements (A.D.R.) with minimum 3-year follow up," in Proceedings of the NASS 25th Annual Meeting, Loveland, CO, USA, 2010, pp. 1S-149S.
[24]G. Gioia, D. Mandelli, and F. Randelli, "The Charité III Artificial Disc lumbar disc prosthesis: assessment of medium-term results " Journal of Orthopaedics and Traumatology vol. 8, 2007, pp. 134-139.
[25]M. Putzier, J. F. Funk, S. V. Schneider, C. Gross, S. W. Tohtz, C. Khodadadyan-Klostermann, C. Perka, and F. Kandziora, "Charite total disc replacement--clinical and radiographical results after an average follow-up of 17 years," European Spine Journal, vol. 15, 2006, pp. 183-95.
[26]P. G. Korovessis, "Re: Sasso RC, Foulk DM, Hahn M. Prospective, randomized trial of metal-on-metal artificial lumbar disc replacement: initial results for treatment of discogenic pain. Spine 2008; 33 : 123-31," Spine, vol. 33, 2008, pp. 1812-1812.
[27]M. X. Rohan, D. D. Ohnmeiss, R. D. Guyer, J. E. Zigler, S. L. Blumenthal, S. H. Hochschuler, B. L. Sachs, and R. F. Rashbaum, "Relationship between the length of time off work preoperatively and clinical outcome at 24-month follow-up in patients undergoing total disc replacement or fusion," Spine Journal, vol. 9, 2009, pp. 360-365.
[28]J. S. Harrop, J. A. Youssef, M. Maltenfort, P. Vorwald, P. Jabbour, C. M. Bono, N. Goldfarb, A. R. Vaccaro, and A. S. Hilibrand, "Lumbar Adjacent Segment Degeneration and Disease After Arthrodesis and Total Disc Arthroplasty," Spine (Phila Pa 1976), vol. 33, 2008, pp. 1701–1707.
[29]I. M. Punt, V. M. Visser, L. W. van Rhijn, S. M. Kurtz, J. Antonis, G. W. Schurink, and A. van Ooij, "Complications and reoperations of the SB Charite lumbar disc prosthesis: experience in 75 patients," European Spine Journal, vol. 17, 2008, pp. 36-43.
[30]S. M. Kurtz, A. Patwardhan, D. MacDonald, L. Ciccarelli, A. van Ooij, M. Lorenz, M. Zindrick, P. O''Leary, J. Isaza, and R. Ross, "What is the correlation of in vivo wear and damage patterns with in vitro TDR motion response?," Spine, vol. 33, 2008, pp. 481-489.
[31]C. J. Siepe, A. Korge, F. Grochulla, C. Mehren, and H. M. Mayer, "Analysis of post-operative pain patterns following total lumbar disc replacement: results from fluoroscopically guided spine infiltrations," European Spine Journal, vol. 17, 2008, pp. 44-56.
[32]C. K. Park, K. S. Ryu, and W. H. Jee, "Degenerative changes of discs and facet joints in lumbar total disc replacement using ProDisc II - Minimum two-year follow-up," Spine, vol. 33, 2008, pp. 1755-1761.
[33]R. C. Huang, F. P. Girardi, F. P. Cammisa, M. R. Lim, P. Tropiano, and T. Marnay, "Correlation between range of motion and outcome after lumbar total disc replacement: 8.6-year follow-up," Spine, vol. 30, 2005, pp. 1407-1411.
[34]A. van Ooij, I. M. Punt, V. M. Visser, L. W. van Rhijn, S. M. Kurtz, J. Antonis, and G. W. H. Schurink, "Complications and reoperations of the SB Charite lumbar disc prosthesis: experience in 75 patients," European Spine Journal, vol. 17, 2008, pp. 36-43.
[35]J. P. Lemaire, H. Carrier, H. Sariali el, W. Skalli, and F. Lavaste, "Clinical and radiological outcomes with the Charite artificial disc: a 10-year minimum follow-up," J Spinal Disord Tech, vol. 18, 2005, pp. 353-9.
[36]C. Tournier, S. Aunoble, J. C. Le Huec, J. P. Lemaire, P. Tropiano, V. Lafage, and W. Skalli, "Total disc arthroplasty: consequences for sagittal balance and lumbar spine movement," European Spine Journal, vol. 16, 2007, pp. 411-21.
[37]J. Delécrin, J. Allain, J. Beaurain, J.-P. Steib, H. Chataigner, L. Aubourg, J. Huppert, M. Ameil, and J.-M. Nguyen, "Does core mobility of lumbar total disc arthroplasty influence sagittal and frontal intervertebral displacement? Radiologic comparison with fixed-core prosthesis," International Society for the Advancement of Spine Surgery journal, vol. 3, 2009, pp. 91-99.
[38]C. Birkenmaier, A. Baur-Melnyk, and M. F. Reiser, "Lumbar disc arthroplasty: indications, biomechanics, types, and radiological criteria," Radiologe, vol. 46, 2006, pp. 768-+.
[39]H. J. Wilke, K. Wenger, and L. Claes, "Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants," European Spine Journal, vol. 7, 1998, pp. 148-54.
[40]N. R. Crawford, A. G. Brantley, C. A. Dickman, and E. J. Koeneman, "An apparatus for applying pure nonconstraining moments to spine segments in vitro," Spine (Phila Pa 1976), vol. 20, 1995, pp. 2097-100.
[41]J. Eguizabal, M. Tufaga, J. K. Scheer, C. Ames, J. C. Lotz, and J. M. Buckley, "Pure moment testing for spinal biomechanics applications: Fixed versus sliding ring cable-driven test designs," Journal of Biomechanics, vol. 43, 2010, pp. 1422-1425.
[42]H. J. Wilke, L. Claes, H. Schmitt, and S. Wolf, "A universal spine tester for in vitro experiments with muscle force simulation," European Spine Journal, vol. 3, 1994, pp. 91-7.
[43]M. Panjabi, G. Malcolmson, E. Teng, Y. Tominaga, G. Henderson, and H. Serhan, "Hybrid testing of lumbar CHARITE discs versus fusions," Spine (Phila Pa 1976), vol. 32, 2007, pp. 959-66; discussion 967.
[44]M. Panjabi, G. Henderson, C. Abjornson, and J. Yue, "Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions," Spine (Phila Pa 1976), vol. 32, 2007, pp. 1311-9.
[45]C. K. Demetropoulos, D. K. Sengupta, M. A. Knaub, B. P. Wiater, C. Abjornson, E. Truumees, and H. N. Herkowitz, "Biomechanical Evaluation of the Kinematics of the Cadaver Lumbar Spine Following Disc Replacement With the Prodisc-L Prosthesis," Spine, vol. 35, 2010, pp. 26-31.
[46]D. M. Wido, B. P. Kelly, K. T. Foley, B. Morrow, P. Wong, K. Kiehm, A. Sin, R. Bertagnoli, and D. J. DiAngelo, "Biomechanical comparison of lumbar disc prostheses: ProDisc-L, Charité, and Maverick Disc implant systems," in 25th Southern Biomedical Engineering Conference, Memphis, TN, 2009, pp. 223-226.
[47]H. J. Wilke, R. Schmidt, M. Richter, W. Schmoelz, H. Reichel, and B. Cakir, "The role of prosthesis design on segmental biomechanics : Semi-constrained versus unconstrained prostheses and anterior versus posterior centre of rotation," European Spine Journal, 2010,
[48]A. Rohlmann, T. Zander, B. Bock, and G. Bergmann, "Effect of position and height of a mobile core type artificial disc on the biomechanical behaviour of the lumbar spine," Proc Inst Mech Eng H, vol. 222, 2008, pp. 229-39.
[49]A. Rohlmann, A. Mann, T. Zander, and G. Bergmann, "Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study," Eur Spine J, vol. 18, 2009, pp. 89-97.
[50]T. Zander, A. Rohlmann, and G. Bergmann, "Influence of different artificial disc kinematics on spine biomechanics," Clin Biomech (Bristol, Avon), vol. 24, 2009, pp. 135-42.
[51]H. Schmidt, S. Midderhoff, K. Adkins, and H. J. Wilke, "The effect of different design concepts in lumbar total disc arthroplasty on the range of motion, facet joint forces and instantaneous center of rotation of a L4-5 segment," Eur Spine J, vol. 18, 2009, pp. 1695-1705.
[52]K. T. Kim, S. H. Lee, K. S. Suk, J. H. Lee, and B. O. Jeong, "Biomechanical Changes of the Lumbar Segment after Total Disc Replacement : Charite (R), Prodisc (R) and Maverick (R) Using Finite Element Model Study," Journal of Korean Neurosurgical Society, vol. 47, 2010, pp. 446-453.
[53]G. Baroud, J. Nemes, P. Heini, and T. Steffen, "Load shift of the intervertebral disc after a vertebroplasty: a finite-element study," European Spine Journal, vol. 12, 2003, pp. 421-426.
[54]Y. M. Lu, W. C. Hutton, and V. M. Gharpuray, "Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model," Spine (Phila Pa 1976), vol. 21, 1996, pp. 2570-9.
[55]A. Rohlmann, T. Zander, H. Schmidt, H. J. Wilke, and G. Bergmann, "Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method," Journal of Biomechanics, vol. 39, 2006, pp. 2484-2490.
[56]H. Schmidt, A. Kettler, F. Heuer, U. Simon, L. Claes, and H. J. Wilke, "Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading," Spine, vol. 32, 2007, pp. 748-755.
[57]A. Shiraziadl, A. M. Ahmed, and S. C. Shrivastava, "Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined with Compression," Spine, vol. 11, 1986, pp. 914-927.
[58]R. Eberlein, G. A. Holzapfel, and C. A. J. Schulze-Bauer, "An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies," Computer Methods in Biomechanics and Biomedical Engineering, vol. 4, 2001, pp. 209-229.
[59]A. Rohlmann, T. Zander, M. Rao, and G. Bergmann, "Applying a follower load delivers realistic results for simulating standing," Journal of Biomechanics, vol. 42, 2009, pp. 1520-1526.
[60]J. Noailly, D. Lacroix, and J. A. Planell, "Finite element study of a novel intervertebral disc substitute," Spine, vol. 30, 2005, pp. 2257-2264.
[61]K. Totoribe, N. Tajima, and E. Chosa, "A biomechanical study of posterolateral lumbar fusion using a three-dimensional nonlinear finite element method," Journal of Orthopaedic Science vol. 4, 1999, pp. 115-126.
[62]M. Panjabi, G. Henderson, C. Abjornson, and J. Yue, "Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions," Spine, vol. 32, 2007, pp. 1311-1319.
[63]A. Polikeit, S. J. Ferguson, L. P. Nolte, and T. E. Orr, "Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis," European Spine Journal, vol. 12, 2003, pp. 413-420.
[64]M. M. Panjabi, "Biomechanical Evaluation of Spinal Fixation Devices .1. A Conceptual-Framework," Spine, vol. 13, 1988, pp. 1129-1134.
[65]M. M. Panjabi, Y. Kato, H. Hoffman, J. Cholewicki, and M. Krag, "A study of stiffness protocol as exemplified by testing of a burst fracture model in sagittal plane," Spine (Phila Pa 1976), vol. 25, 2000, pp. 2748-54.
[66]M. M. Panjabi, "Hybrid multidirectional test method to evaluate spinal adjacent-level effects," Clin Biomech (Bristol, Avon), vol. 22, 2007, pp. 257-65.
[67]A. G. Patwardhan, R. M. Havey, K. P. Meade, B. Lee, and B. Dunlap, "A follower load increases the load-carrying capacity of the lumbar spine in compression," Spine (Phila Pa 1976), vol. 24, 1999, pp. 1003-9.
[68]C. W. Spoor and F. E. Veldpaus, "Rigid body motion calculated from spatial co-ordinates of markers," Journal of Biomechanics, vol. 13, 1980, pp. 391-3.
[69]H. Schmidt, F. Heuer, L. Claes, and H. J. Wilke, "The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis," Clinical Biomechanics, vol. 23, 2008, pp. 270-278.
[70]S. M. Renner, R. N. Natarajan, A. G. Patwardhan, R. M. Havey, L. I. Voronov, B. Y. Guo, G. B. J. Andersson, and H. S. An, "Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine," Journal of Biomechanics, vol. 40, 2007, pp. 1326-1332.
[71]V. K. Goel, J. N. Grauer, T. Patel, A. Biyani, K. Sairyo, S. Vishnubhotla, A. Matyas, I. Cowgill, M. Shaw, R. Long, D. Dick, M. M. Panjabi, and H. Serhan, "Effects of charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol," Spine (Phila Pa 1976), vol. 30, 2005, pp. 2755-64.
[72]T. Zander, A. Rohlmann, and G. Bergmann, "Influence of ligament stiffness on the mechanical behavior of a functional spinal unit," Journal of Biomechanics, vol. 37, 2004, pp. 1107-11.
[73]A. Rohlmann, T. Zander, and G. Bergmann, "Effect of total disc replacement with ProDisc on intersegmental rotation of the lumbar spine," Spine (Phila Pa 1976), vol. 30, 2005, pp. 738-43.
[74]D. H. Chow, K. D. Luk, J. H. Evans, and J. C. Leong, "Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments," Spine (Phila Pa 1976), vol. 21, 1996, pp. 549-55.
[75]S. W. Lee, E. R. Draper, and S. P. Hughes, "Instantaneous center of rotation and instability of the cervical spine. A clinical study," Spine (Phila Pa 1976), vol. 22, 1997, pp. 641-7; discussion 647-8.
[76]F. H. Geisler, S. L. Blumenthal, R. D. Guyer, P. C. McAfee, J. J. Regan, J. P. Johnson, and B. Mullin, "Neurological complications of lumbar artificial disc replacement and comparison of clinical results with those related to lumbar arthrodesis in the literature: results of a multicenter, prospective, randomized investigational device exemption study of Charite intervertebral disc," Journal of Neurosurgery-Spine, vol. 1, 2004, pp. 143-154.
[77]http://www.chiropractic-help.com/Lumbar-facet-syndrome.html.
[78]M. A. Rousseau, D. S. Bradford, T. M. Hadi, K. L. Pedersen, and J. C. Lotz, "The instant axis of rotation influences facet forces at L5/S1 during flexion/extension and lateral bending," European Spine Journal, vol. 15, 2006, pp. 299-307.
[79]S. D. Gertzbein, R. Holtby, M. Tile, A. Kapasouri, K. W. Chan, and B. Cruickshank, "Determination of a Locus of Instantaneous Centers of Rotation of the Lumbar-Disk by Moire Fringes - a New Technique," Spine, vol. 9, 1984, pp. 409-413.
[80]A. Rohlmann, T. Zander, M. Rao, and G. Bergmann, "Realistic loading conditions for upper body bending," Journal of Biomechanics, vol. 42, 2009, pp. 884-90.
[81]M. Dreischarf, T. Zander, G. Bergmann, and A. Rohlmann, "A non-optimized follower load path may cause considerable intervertebral rotations," Journal of Biomechanics, vol. 43, 2010, pp. 2625-8.
[82]V. K. Goel, A. Mehta, J. Jangra, A. Faizan, A. Kiapour, R. W. Hoy, and A. R. Fauth, "Anatomic Facet Replacement System (AFRS) Restoration of Lumbar Segment Mechanics to Intact: A Finite Element Study and In Vitro Cadaver Investigation," The International Journal of Spine Surgery, vol. 1, 2007, pp. 46-54.
[83]C. Ulrich, O. Woersdoerfer, R. Kalff, L. Claes, and H. J. Wilke, "Biomechanics of fixation systems to the cervical spine," Spine (Phila Pa 1976), vol. 16, 1991, pp. S4-9.
[84]H. J. Wilke, K. Fischer, A. Kugler, F. Magerl, L. Claes, and O. Worsdorfer, "In vitro investigations of internal fixation systems of the upper cervical spine. I. Stability of the direct anterior screw fixation of the odontoid," Eur Spine J, vol. 1, 1992, pp. 185-90.
[85]H. J. Wilke, K. Fischer, A. Kugler, F. Magerl, L. Claes, and O. Worsdorfer, "In vitro investigations of internal fixation systems of the upper cervical spine. II. Stability of posterior atlanto-axial fixation techniques," Eur Spine J, vol. 1, 1992, pp. 191-9.
[86]I. Busscher, J. J. Ploegmakers, G. J. Verkerke, and A. G. Veldhuizen, "Comparative anatomical dimensions of the complete human and porcine spine," Eur Spine J, vol. 19, 2010, pp. 1104-14.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top