跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴宣融
研究生(外文):Xuan-Rong Lai
論文名稱:染料敏化太陽能電池之天然染料研發
論文名稱(外文):Development of natural dyes for dye sensitized solar cells
指導教授:張合
口試委員:郭金國簡淑華卓清松
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:68
中文關鍵詞:天然染料雞尾酒葉綠素花青素旋轉塗佈法光電轉換效率
外文關鍵詞:Natural dyeCocktailChlorophyllAnthocyaninSpin coatingPhoto-electric conversion efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:1
本研究以天然染料作為敏化太陽能電池,使用天然染料替代廣泛使用的合成染料。本實驗使用葉綠素及花青素兩種天然染料,葉綠素染料採用艾草萃取,而花青素染料採用紫色甘藍萃取作為研究,此外也將所得之葉綠素及花青素染料以等體積比混合成為雞尾酒方式的染料。萃取天然染料的方法將材料混合於乙醇及甲醇及丙酮三種溶劑中,再以隔水加熱方式淬取染料,加熱溫度為50℃且持續30分鐘。實驗工作電極之製備使用商用P25 TiO2粉末經旋轉塗佈法於ITO 導電面鍍成一層薄膜,製備出不同薄膜厚度作分析,對電極使用之FTO則是以濺鍍法製成厚度約20nm之Pt 電極。各種染料的吸收光譜UV-VIS,葉綠素染料吸收峰在660及410 nm左右,花青素染料吸收峰約在550 nm左右,而雞尾酒染料可以獲得兼具兩者吸收特性,吸收強度為兩種獨立染料之吸收強度範圍內。實驗結果在旋轉塗佈法所製備出的光陽極,薄膜厚度約30、25及20μm,且以無水酒精當溶劑所製備出的雞尾酒染料擁有最大光電轉換效率(η)1.74%,而開路電壓(VOC) 0.619V,短路電流密度(JSC) 5.63mA/cm2。艾草所萃取之葉綠素染料擁有光電轉換效率(η)為0.9%,而紫色甘藍所萃取之花青素染料擁有光電轉換效率1.47%。

The performance of dye sensitized solar cells is mainly based on the dye as a sensitizer, the natural dyes have extensively replaced synthetic dyes. In the experiments of the research is based on the two natural dyes of chlorophyll and anthocyanin for the study, one of the natural dyes is chlorophyll, which is extracted from wormwood and the other is anthocyanin dye which is extracted from purple cabbage extract. In addition, the chlorophyll and anthocyanin dyes were blended in the proportion of equal volume as cocktail-form dyes. The way of extracting natural dye is to mix the materials in a container of absolute ethanol, methanol and acetone, which is then placed in another container of water for heating and the temperature of heating is 50oC for 30 min, so as to extract dye. Regarding the preparation of electrode for experiments of the study, P25 TiO2 powder for commercial use is coated by Spin coating on the ITO conducting surface to form a thin film. The FTO for use by electrode is Pt electrode at thickness of around 20nm made by sputtering. Each of the dyes absorbs spectrum UV-VIS. The absorption peak of chlorophyll dye is 660 and 410 nm, whereas the absorption peak of anthocyanin dye is 550 nm. But cocktail dye can acquire the absorption features of both dyes, with absorption strength being within the range of absorption strength of these two independent dyes. the photoanode was made by spin coasting, preparation of films have been made at three different speeds 500 1000 1500 rpm, approximately 30, 25 and 20 μm. The result of experiment shown that the film is made at speed 1000rpm with the cocktail dissolve in solvent of absolute ethanol achieve the greatest photo-electric conversion effciency (η) 1.74%, open-circuit voltage (VOC) 0.645V, and short-circuit current density (JSC) 3.16mA/cm2. In addition the chlorophyll dye is extracted from wormwood achieves the photo-electric conversion efficiency (η) 0.9%, moreover the anthocyanin dyes extracted from purple cabbage achieves the photo-electric conversion efficiency 1.47%.

摘要 I
Abstruct II
誌謝 IV
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 1
第二章 基礎原理及文獻回顧 3
2.1 太陽能電池簡介 3
2.1.1 太陽能電池的原理 3
2.1.2 太陽能電池種類及發展 4
2.1.2.1 結晶矽太陽能電池 4
2.1.2.2 薄膜太陽能電池 5
2.1.2.3 有機太陽能電池 5
2.2 染料敏化太陽能電池 6
2.2.1 染料敏化太陽能電池的結構及工作原理 6
2.3 透明導電玻璃 8
2.4 電解質 8
2.5 對電極 8
2.6 染料光敏化劑 9
2.6.1 有機金屬錯合物色素 9
2.6.2 天然染料 10
2.6.2.1 葉綠素 10
2.6.2.2 花青素 11
2.6.2.3 雞尾酒染料 13
2.6.3 天然色素之光化學反應機制 13
2.6.3.1 太陽光能 13
2.6.3.2 物質對光的吸收與放射 15
2.7 多孔奈米半導體薄膜 16
2.7.1 旋轉塗佈法 18
2.8 染料敏化太陽能電池之天然染料文獻回顧 19
第三章 實驗材料、實驗儀器及實驗方法 20
3.1 實驗材料 20
3.2 實驗儀器及規格 21
3.3 工作電極之製備 21
3.3.1 導電玻璃之清洗 21
3.3.2 二氧化鈦薄膜光陽極製備 22
3.3.3 電解質配製 23
3.3.4 反電極製作 23
3.3.5 染料選擇及萃取 24
3.3.5.1 紫色甘藍 24
3.3.5.2 艾草 24
3.3.5.3 染料萃取 25
3.3.6 實驗流程 26
3.3.7 電池組裝 27
3.4 分析設備應用原理 28
3.4.1 紫外光-可見光吸收光譜儀(UV/Vis) 28
3.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy) 28
3.4.2.1 能量散佈分析儀(EDS) 29
3.4.3 穿透式電子顯微鏡(TEM) 30
3.4.4 傅立葉轉換紅外光譜儀(FT-IR) 30
3.4.5 X-ray繞射儀(XRD) 31
3.4.6 入射光子-電子轉換效率(IPCE) 32
3.4.7 太陽能模擬器(Solar simulator) 33
第四章 結果與討論 34
4.1 能量散佈分析儀(EDS)分析 34
4.2 二氧化鈦薄膜型態 35
4.3 X光粉末繞射(XRD)分析 38
4.4 染料敏化太陽能電池光電特性分析 39
4.4.1 葉綠素染料UV-VIS吸收光譜 39
4.4.2 葉綠素染料敏化太陽能電池光電轉換效率 40
4.4.3 葉綠素染料FT-IR紅外線光譜 41
4.4.4 花青素染料UV-VIS吸收光譜 42
4.4.5 花青素染料敏化太陽能電池光電轉換效率 43
4.4.6 不同pH值花青素染料敏化太陽能電池光電效率 44
4.4.7 花青素染料FT-IR紅外線光譜 46
4.4.8 雞尾酒染料UV-VIS吸收光譜 46
4.4.9 雞尾酒染料敏化太陽能電池之入射光電子轉換效率 49
4.4.10 雞尾酒染料敏化太陽能電池光電轉換效率 50
4.4.10.1 葉綠素、花青素及雞尾酒/500轉製備薄膜 50
4.4.10.2 不同體積比雞尾酒/500轉製備薄膜 51
4.4.10.3 葉綠素、花青素及雞尾酒染料/1000轉製備薄膜 53
4.4.10.4 葉綠素、花青素及雞尾酒染料/1500轉製備薄膜 54
4.4.10.5 雞尾酒染料/三種轉速製備薄膜/甲醇 55
4.4.10.6 雞尾酒染料/三種轉速製備薄膜/丙酮 56
4.4.10.7 雞尾酒染料/三種溶劑/1000轉製備薄膜 57
4.4.11 電壓衰退 58
4.4.11.1 不同天然染料 59
4.4.11.2 不同溶劑萃取雞尾酒染料 60
4.4.12 TiO2薄膜厚度之電化學阻抗 62
第五章 結論 64
參考文獻 65


[1]D. M. Chapin, C. S. Fuller and G. L. Pearson, "A New Silicon p-n Junction photocell for Converting Solar Radiation into Electrical Power," J. Appl. Phys, vol 25, 1954, pp. 676.
[2]B. O’Regan and M. Gratzel, Nature, vol 353, 1991, pp. 737.
[3]Y Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Y. Han, "Dye-sensitized solar cells with conversion efficiency of 11.1%," Jpn. J. Appl. Phys. vol. 45, 2006, pp. 638–640.
[4]R. Buscaino, C. Baiocchi, C. Barolo, C. Medana, M. Gratzel, Md.K. Nazeeruddin, G. Viscardi, "A mass spectrometric analysis of sensitizer solution used for dye-sensitized solar cell," Inorg. Chim. Acta, vol. 361, 2008, pp. 798–805.
[5]彭懷夫,中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用,碩士論文,國立東華大學化學研究所,花蓮,2004。
[6]楊素華,蔡泰成,「太陽光能發電元件太陽能電池」,科學發展,第390期,第50-55頁。
[7]C. Vita-Finzi, "Photovoltaics," The Sun, 2008, pp, 128.
[8]M. Gratzel, Nature, vol. 414, 2001, pp. 338–344.
[9]A. S. Polo, M. K. Itokazu and N. Y. M. Iha, "Metal complex sensitizers in dye-sensitized solar cells," Coord. Chem. Rev, vol. 248, 2004, pp.1343–1361.
[10]M. Gratzel, Actual. Chim, 2007, pp.57–60.
[11]S. Yanagida, "Recent research progress of dye-sensitized solar cells in Japan, " Comptes Rendus Chimie, vol. 9, 2006, pp.597–604.
[12]D. Matthews, P. Infelta, M. Gratzel, "Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes," Solar Energy Materials and Solar Cells, vol. 44, 1996, pp.119.
[13]M. Gratzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," Inorganic Chemistry, vol. 44, 2005, pp.841.
[14]Jennifer A. Pollard, Dongshe Zhang, Jonathan A. Downing, Fritz J. Knorr, and Jeanne L. McHale, "Solvent Effects on Interfacial Electron Transfer from Ru(4,4‘-dicarboxylic acid-2,2‘-bipyridine)2(NCS)2 to Nanoparticulate TiO2:  Spectroscopy and Solar Photoconversion", J. Phys. Chem. A, vol. 109, no. 50, 2005, pp 11443–11452.
[15]劉茂煌,「奈米光電池」,工業材料雜誌,2003,第93-96頁。
[16]G. A. Carter, "Responses of leaf spectral reflectance to plant stress", Journal American of Botany, vol. 80, 1993, pp. 231-243.
[17]蘇艾真,桑椹浸澤萃取條件對成分溶出及萃取液抗氧化力的影響,碩士論文,國立台灣大學生物資源暨農學院園藝所,台北,2007。
[18]羅右任,天然染料應用於染料敏化太陽能電池之特性分析,碩士論文,國立臺北科技大學製造科技研究所,台北,2009。
[19]盧秀青,桑椹果及洛神葵中花青素之分離及純化,碩士論文,國立台灣大學化學工程研究所,台北,2005。
[20]王增興,食品化學,台灣:合記圖書出版社發行,2005,第175-210頁。
[21]http://fsf.nerc.ac.uk/instruments/ger3700.shtml
[22]葉育材編著,光合作用-植物生產力的生理基礎,台北:國立編譯館,1982,第11-96頁。
[23]常建華等編著,波譜原理及解析,北京:科學出版社,2005,第23-24頁。
[24]N. J. Cherepy, G. P. Smestad, M. Gratzel, and J. Z. Zhang, "Ultrafast electron Injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye TiO2 nanocrystalline electrode," J. Phys. Chem. B, vol 101, 1997, pp.9342-9351.
[25]Q. Dai, and J. Rabani, "Photosensitization of nanocrystalline TiO2 films by Anthocyanin dyes", Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, 2002, pp. 17-24.
[26]M. Guo, P. Diao, Y. J. Ren, F. Meng, H. Tian, and S. M. Cai, "Photoelectrochemical Studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes", Solar Energy Materials and Solar Cells, vol. 88, 2005, pp. 23-35.
[27]陳炳輝,「類胡蘿蔔素的特性與應用」,科學發展月刊,第二十八卷,第八期,2000,第599-604頁。
[28]K. Keis, L. Vayssieres, S. E. Linfquist, A. Hagfeldt, Nanostruct. Mater., vol. 12, 1999, pp.487.
[29]S. Ferrere, A. Zaban, B. A. Gregg, J. Phys. Chem. B, vol. 101, 1997, pp. 4490.
[30]P. Guo, M. A. Aegerter, Thin Solid Films, vol. 351, 1999, pp. 290.
[31]M. Y. EI Zayat, A. O. Saed, M. S. EI-Dessouki, Int. J. Hydrogen Energy, vol. 23, 1998, pp. 259.
[32]K. Kalyanasundaram and M. Gratzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices," Coord. Chem. Rev., vol. 177, 1998, pp.347-414.
[33]B. H. Kim, J. H. Ahn, J. H. Jeong, Y. S. Jeon, K. O. Jeon and K. S. Hwang, "Preparation of TiO2 thin film on SiO2 glass by a spin coating-pyrolysis process," Ceram. Int., vol. 32, 2006, pp.223-225.
[34]J. K. Burdett, T, Hughbands, J. M. Gordon, J. W. R. Jr. and J. V. Smith, "Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K," Journal of the American Chemical Society, vol. 109, no. 12, 1987, pp. 3639-3646.
[35]C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press: San Diego CA, 1990.
[36]G. R. A. Kumara, S. Kanekoa, M. Okuya, B. O. Agyeman, A. Konno and K. Tennakone, "Shiso leaf pigments for dye-sensitized solid-state solar cell," Solar Energy Materials & Solar Cells, vol. 90, 2006, pp. 1220-1226.
[37]H. Sancun, W. Jihuai, H. Yunfang and L. Jianming, "Natural dyes as photosensitizers for dye-sensitized solar cell," Solar Energy, vol. 80, 2006, pp. 209-214.
[38]B.Liu, X. Zhao, W. Luo, "The synergistic effect of two photosynthetic pigments in dye-sensitized mesoporous TiO2 solar cells," Dyes and Pigments, vol. 76, 2008, pp. 327.
[39]G. Calogero and G. D. Marco, "Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells," Solar Energy Materials & Solar Cells, vol. 92, 2008, pp. 1341-1346.
[40]C. Ho and L. Yu-Jen, "Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells", Solar Energy, vol. 84, Issue 10, 2010, pp.1833–1837 .
[41]J. En Mei, P. Kyung-Hee, J. Bo, Y. Je-Jung and G. Hal-Bon, "Photosensitization of nanoporous TiO2 films with natural dye," Phys. Scr., vol. 139, 2010.
[42]G. Calogero, G. Di Marco, S. Cazzanti et al., "Efficient dye sensitized solar cells using red turnip and purple wild Sicilian prickly pear fruits", International Journal of Molecular Sciences, vol. 11, no. 1, 2010, pp. 254–267.
[43]Z. Huizhi, W. Liqiong, G. Yurong and M. Tingli, "Dye-sensitized solar cells using 20 natural dyes as sensitizers," Journal of Photochemistry and Photobiology A: Chemistry, 2011, pp.188-194.
[44]Giuseppe Calogeroa, Jun-Ho Yumb, Alessandro Sinopolia, Gaetano Di Marcoa, Michael Gratzelb, Mohammad Khaja Nazeeruddinb, "Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells", Solar Energy, Volume 86, Issue 5, , Pages 1563–1575 (2012).
[45]程雪源,徐雷,範龔健,「紅甘藍色素及其穩定性研究進展」,食品研究與開發,第二十八卷,第四期,2007,第188-191頁。
[46]P. K. D. D. P. Pitigala, M. K. I. Seneviratne, V. P. S. Perera and K. Tennakone, "Sensitization of nanostructured TiO2 by electrostatic coupling of ionic dyes to ionic absorbates, " Langmuir, vol. 20, 2004, pp. 5100-5103.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top