跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李健瑋
研究生(外文):Jian-Wei Li
論文名稱:奈米碳管應用於紅外線加熱與DNA微流道晶片之研究
論文名稱(外文):Research of Carbon Nanotubes Applied to Infrared Heating and DNA Microfluidic Chip
指導教授:黃榮堂黃榮堂引用關係林震林震引用關係
指導教授(外文):Jung-Tang HuangJeen Lin
口試委員:林致廷施文彬
口試委員(外文):Chih-Ting LinWen-Pin Shih
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:奈米碳管無電解電鍍CMOS-MEMS微流道
外文關鍵詞:Carbon nanotube (CNT)Carbon nano-Coil (CNC)Electroless platingCMOS-MEMSMicrofluidic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究共分為兩個主題:一是奈米碳管無電解電鍍鎳與金以及紅外線吸收加熱。內容為將多壁奈米碳管與奈米螺旋碳管施以酸洗、敏化、催化等前處理,依序在表面形成活性官能基、敏化層與催化層。接著利用無電解電鍍的方法,在多壁奈米碳管與奈米螺旋碳管表面鍍上鎳與金,並施以適當的熱處理使其具有良好的導磁性及表面特性。後續再以波長808nm、功率250mW的近紅外線二極體雷射分別照射施鍍前/後的多壁奈米碳管與奈米螺旋碳管,搭配紅外線熱像儀觀察其溫度變化。探討表面鍍上鎳與金的多壁奈米碳管與奈米螺旋碳管吸收紅外線轉化為熱能之能力。實現可磁操縱與吸收近紅外線轉化為熱能的中空奈米材料。
二是DNA微流道定序晶片設計。內容以TSMC CMOS 0.18μm製程為基礎,搭配曝光、顯影、蝕刻、濺鍍、聚焦離子束(FIB)等後製程,設計出結合分散、拉直DNA的微流道結構與奈米碳管電晶體(CNTFET)量測單元之MEMS晶片。再以PDMS氧電漿接合與準分子雷射鑽孔,製作出封裝微流道晶片與微流道的進/出口。藉由microinjection探針將DNA檢體注入晶片上的微流道入口,透過微流道結構將DNA分散、拉直並接觸CNTFET量測單元,經由量測CNTFET不同的電流訊號分辨出DNA的四種鹼基:A、C、G、T以達到定序之目的。

The research was two topic included. First topic demonstrated for MWCNTs and CNCs which were gold and nickel coated on the surface by electroless plating, with thermal energy convertible by near-infrered absorption. Before coating process, we employ acid-washing, sensitization and activation as pre-treatment on MWCNTs and CNCs. After the coating process was finished. An ability of thermal energy convertible by near-infrared absorbtion was explored with near-infrared irradiation.
Second topic is DNA sequencing by microfluidic chip. According to TSMC CMOS 0.18μm process and the post-process, this chip contains the CNTFET measurement components and microfluidic for DNA dispersion. The dispersed DNA will be directed through the CNTFETs. When DNA base contacts the CNT, The electrical properties will be changed, by measurement of the electrical signals from CNTFETs , thus the purpose of sequencing can be achieved.

中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.1.1 碳的同素異形體 1
1.1.2 奈米碳管的發現 2
1.1.3 奈米碳管的特殊性質及應用 3
1.1.4 癌症熱療法 4
1.1.5 DNA 5
1.2 研究動機 6
1.2.1 奈米材料熱療法 6
1.2.2 DNA定序 6
1.3 研究目標與論文架構 7
第二章 文獻探討與相關理論 9
2.1奈米材料加熱 9
2.2 無電解電鍍 12
2.2.1 無電解電鍍簡介 12
2.2.2 無電解電鍍鎳反應原理 14
2.2.3 無電解電鍍鎳的物理特性 15
2.2.4無電解電鍍金製程原理 16
2.2.5 奈米碳管無電解電鍍 16
2.3 分散DNA 19
2.4 毛細現象 25
2.4.1毛細作用的基本方程式 25
2.4.2 公式推導 27
2.5 DNA定序方法 29
2.6 單壁奈米碳管簡介 31
2.7 奈米碳管場效電晶體 33
2.7.1 奈米碳管場效電晶體的型態 33
2.7.2 奈米碳管電晶體之接觸電阻、彈道傳輸、電流密度 35
2.8 奈米碳管之操控與排列 37
2.8.1 藉由表面處理操控碳管 37
2.8.2 以DEP操控奈米碳管 39
2.8.3光阻局部定義 41
第三章 奈米碳管無電解電鍍製作流程 43
3.1 酸洗純化 45
3.2 敏化 46
3.3 催化 47
3.4 無電解電鍍鎳 48
3.5 無電解電鍍金 50
3.6 實驗配方與儀器圖 51
第四章 DNA定序微流道晶片設計 57
4.1 微流道結構 58
4.2 DNA定序感測元件 60
4.2.1 利用介電泳力操控奈米碳管 61
4.2.2 使用介電泳力對準奈米碳管 62
4.2.3 微流道搭配介電泳力組裝碳管 62
4.2.4 定序感測方式 64
4.3 晶片封裝 65
4.4 晶片後製程 66
4.4.1 微流道後製程 67
4.4.2 奈米碳管電晶體後製程 68
4.5 實驗儀器 70
第五章 結果與討論 72
5.1 奈米碳管無電解電鍍之結果 72
5.1.1 掃描式電子顯微鏡(SEM)與成分分析 72
5.1.2 磁性測試 77
5.1.3 紅外線照射實驗 78
5.2 微流道晶片結構 82
第六章 結論與未來展望 87
6.1 結論 87
6.2 未來展望 88
參考文獻 89


[1]H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl and R. E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, 14 November 1985, pp. 162-163.
[2]S. Iijima, "Helical microtubules of graphitic carbon," Nature, Vol. 354, November 1991, pp. 56-58.
[3]S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1 nm diameter," Nature, vol. 363, June 1993, pp. 603-605.
[4]S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis and R. C. Haddon, "Chemistry of Single-Walled Carbon Nanotubes," Acc. Chem. Res., vol. 35, no. 12, 2002, pp. 1105-1113.
[5]Wicht technologie Consulting (WTC), "Applied Research Roadmaps for RF micronano systems," 2008, from http://www.wtc-consult.com.
[6] 萬芳醫院 胃癌專屬網站 溫熱療法(溫熱治療)簡介http://wf-breast-center.com/gc/GCHome.htm
[7] Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters, Molecular Biology of the Cell; Fourth Edition, New York and London: Garland Science, 2002, ISBN 0-8153-3218-1.
[8]Gregory S, et al.. The DNA sequence and biological annotation of human chromosome 1. Nature. 2006, 441 (7091): 315 – 21. PMID 16710414.
[9] Berg J., Tymoczko J. and Stryer L, Biochemistry. W. H. Freeman and Company, 2002, ISBN 0-7167-4955-6
[10]李思元, 莊以光, 「DNA 定序技術之演進與發展」, J Biomed Lab Sci, 2010, Vol 22, No 2
[11]Geoffrey von Maltzahn, G. et al., "Computationally Guided Photothermal Tumor Therapy UsingLong-Circulating Gold Nanorod Antennas," Cancer Res. 69, 3892–3900 (2009).
[12] Yang Xu, et al., "Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy," Nanotechnology, 19, 2008, 435102 (9pp).
[13]Supratim Ghosh, Samrat Dutta, Evan Gomes, David Carroll, Ralph D’Agostino, Jr., John Olson, Martin Guthold and William H. Gmeiner, "Increased Heating Efficiency and Selective Thermal Ablation of Malignant Tissue with DNA-Encased Multiwalled Carbon Nanotubes," ACSNANO 3:2667–2673, 2009
[14]Naiyan Huang, Hequn Wang, Jianhua Zhao, Harvey Lui, Mladen Korbelik, and Haishan Zeng, "Single-Wall Carbon Nanotubes Assisted Photothermal Cancer Therapy: Animal Study With a Murine Model of Squamous Cell Carcinoma," Lasers in Surgery and Medicine 42:638–648, 2010.
[15]R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, "Single- and multi-wall carbon nanotube field-effect transistors," Applied Physics Letters, vol. 73, vo. 17, October 1998, pp. 2447-2449.
[16] H. Bi, K.C. Kou, A.E. Rider, K. Ostrikov, H.W. Wua, and Z.C. Wanga, "Low-phosporous nickel-coated carbon microcoils: Controlling microstructure through an electroless plating process," Applied Surface Science, 255(2009) 6888-6893.
[17]Kong F Z, Zhang X B and Xiong WQ, "Continuous Ni-layer on multiwall carbon nanotubes by an electroless plating method," [J],Surface and Coatings Technology, 2002,155:33-36.
[18]Susumu Arai, Yuzo Imoto, Yosuke Suzuki and Morinobu Endo, "Fabrication of Ni–B alloy coated vapor-grown carbonnanofibers by electroless deposition," CARBON, vol.49, 2011, pp. 1484-1490.
[19]Seong-Min Bak, Kwang-Heon Kim, Chang-Wook Lee and Kwang-Bum Kim, "Mesoporous nickel/carbon nanotube hybrid material prepared by electroless eposition, " J. Mater. Chem., 2011, 21, pp. 1984–1990
[20]WANG Zheng-yuan, "IR-spectrum studies of effects of nitric acid treatment on carboxyl groups on multi-wall carbon nanotubes," CARBON TECHNIQUES,1999(5)
[21]WANG Yu-ren, "A novel Method for Electroless Nickel Plating on Carbon Fibres and Carbon Nanotubes, " CHINA SURFACE ENGINEERING, 2005 18
[22]A. Baumgartner and M. Muthukumar, "A Trapped Polymer-Chain in Random Porous-Media," Journal of Chemical Physics., vol. 87, pp. 3082-3088, 1987.
[23]M. Muthukumar and A. Baumgartner, "Effects of Entropic Barriers on Polyner Dynamics," Macromolecules, vol. 22, pp. 1937-1941, 1989.
[24]M. Muthukumar and A. Baumgartner, "Diffusion of a Polymer-Chain in Rrandom-Media," Macromolecules, vol. 22, pp. 1941-1946, 1989.
[25]鄭光鈴,生物粒子在熵障礙管柱中的泳動現象,博士論文,國立臺灣大學化學工程研究所,台北,2009
[26]A. G. Ogston, "The Spaces in a Uniform Random Suspension of Fibres," Transactions of the Faraday Society, vol. 54, pp. 1754-1757, 1958.
[27]Olgica Bakajin, Thomas A. J. Duke, Jonas Tegenfeldt, Chia-Fu Chou, Shirley S. Chan, Robert H. Austin and Edward C. Cox, "Separation of 100-Kilobase DNA Molecules in 10 Seconds, " Analytical Chemistry, Vol. 73, No. 24, pp. 6053 – 6056
[28]Mario Cabodi, Stephen W. P. Turner, and Harold G. Craighead, "Entropic Recoil Separation of Long DNA Molecules, " Anal. Chem., 2002, Vol.74, pp.5169 – 5174
[29]Han Cao, Jonas O. Tegenfeldt, Robert H. Austin and Stephen Y. Chou, "Gradient nanostructures for interfacing microfluidics and nanofluidics, " Appl. Phys. Lett., Vol. 81, No. 16, pp. 3058-3060
[30]Wentao Wang, Yick Chuen Chan and Yi-Kuen Lee, "Biased reptation model with electroosmosis for DNA electrophoresis in microchannels with a sub-micron pillar array, " J. Micromech. Microeng., Vol.21 (2011) 085031 (11pp)
[31] Man P. F., Mastrangelo C. H., Burns M. A., Burke D. T., “MICROFABRICATED CAPILLARITY-DRIVEN STOP VALVE AND SAMPLE INJECTOR,” 1998 MEMS Conference, pp. 25-29(1998).
[32]陳家榮,生物晶片上表面張力驅動之微流道閥門系統的設計與製造,碩士論 文,南台科技大學,2004
[33]Seung Kyu Min, Woo Youn Kim, Yeonchoo Cho and Kwang S. Kim, "Fast DNA sequencing with a graphene-based nanochannel device, " NATURE NANOTECHNOLOGY, VOL 6, PP. 162-165
[34] Chen Xiaohua, Xia Jintong and Pang Jingcui,et a1, "Carbon-nanotube metal-matrix composites prepared by electroless plating," [J]composites Science and technology, 2000,60:301-306
[35]C. Journet, P. Bernier, "Production of carbon nanotubes," Applied Physics A: Materials Science & Processing, vol.67, no. 1, July 1998, pp. 1-9.
[36]S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova and P. L. McEuen, "High Performance Electrolyte Gated Carbon Nanotube Transistors," Nano Letters, vol. 2, issue 8, July 2002, pp. 869-872
[37]J. Suehiro, H. Imakiire, S. I. Hidaka, W. D. Ding, G. B. Zhou, K. Imasaka and M. Hara, "Schottky-type response of carbon nanotube NO 2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis," Sensors and Actuators B: Chemical, vol. 114, April 2006, pp. 943-949.
[38]R. V. Seidel, A. P. Graham, J. Kretz, B. Rajasekharan, G. S. Duesberg, M. Liebau, E. Unger, F. Kreupl and W. Hoenlein, "Sub-20 nm Short Channel Carbon Nanotube Transistors," Nano Letters, vol. 5, no. 1, January 2005, pp.147-150.
[39]Kong F Z, Zhang X B and Xiong WQ, "Cominuous Ni-layer on multiwall carbon nanotubes by all electroless plying method, " [J] Surface and Coatings Technology, 2002,155:33-36.
[40]C. W. Zhou, J. Kong and H. J. Dai, "Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters," Applied Physics Letters, vol. 76, no. 12, March 2000, pp. 1597-1599.
[41]W. Kim, A. Javey, R. Tu, J. Cao, Q. Wang and H. J. Dai, "Electrical contacts to carbon nanotubes down to 1 nm in diameter, "Applied Physics Letters, vol. 87, October 2005, pp. 173101.
[42]R. Saito, G. Dresselhaus and M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes, " United Kingdom: Imperial College Press, 1998.
[43]T. Du1rkop, S. A. Getty, E. Cobas and M. S. Fuhrer, "Extraordinary Mobility in Semiconducting Carbon Nanotubes," Nano Letters, vol. 4, no. 1, 2004, pp. 35-39.
[44]M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman and R. E. Smalley, "Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes," Science, vol. 297, July 2002, pp. 593-596.
[45]J. A. Howarter and J. P. Youngblood, "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir, vol. 22, issue 26, November 2006, pp. 11142-11147.
[46]J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert and R. E. Smalley, "Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates," Chemical Physics Letters, vol. 303, Issues 1-2, April 1999, pp. 125-129.
[47]Li. S, Yan. Y, Liu. N, Chan-Park. M.B, "Transfer printing of submicrometer patterns of aligned carbon nanotubes onto functionalized electrodes," Small, No.4, March 2007,pp. 616-621
[48] H. W. Seo, C. S. Han, D. G. Choi, K. S. Kim and Y. H. Lee, "Controlled assembly of single SWNTs bundle using dielectrophoresis," Microelectronic Engineering, vol. 81, April 2005, pp. 83-89.
[49]Vijayaraghavan. A, Blatt. S, Weissenberger. D, Oron-Carl. M, Hennrich. F, Gerthsen. D, Hahn. H, Krupke. R, "Ultra-large-scale directed assembly of single-walled carbon nanotube devices," Nano Letters ,April 2007, pp. 1556-1560.
[50]Kang. J, Lee. J, Kim. T. H, Park. J, Seong. M. J, Hong. S, "Large-scale assembly of carbon nanotube-based flexible circuits for DNA sensors," Nanotechnology, February 2008, art. no. 135305
[51]張雅文,化鎳浸金手冊,樺金科技,2004
[52]J. A. Howarter and J. P. Youngblood, "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir, vol. 22, issue 26, November 2006, pp. 11142-11147.
[53]Morton Schwartz and Glenn O. Mallory, "Effect of Heat-Treatments on Magnetic Properties of Electroless Nickel Alloys," J. Electrochem. Soc.: ELECTROCHEMICAL SCIENCE AND TECHNOLOG Y, Vol. 123, 1976, pp. 606-614
[54]R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, "Single- and multi-wall carbon nanotube field-effect transistors," Applied Physics Letters, vol. 73, vo. 17, October 1998, pp. 2447-2449
[55]Yu Chang Kim, Seung-Hoon Kim, Duckjong Kim, Sang-Jin Park, Je-Kyun Park, " Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane) , " Sensors and Actuators B, 145 , 2010.
[56]Ivan K. Dimov, Lourdes Basabe-Desmonts, Jose L. Garcia-Cordero, Benjamin M. Ross, Antonio J. Riccoa and Luke P. Lee, "Stand-alone self-powered integrated microfluidic blood analysis system(SIMBAS)", 2010.
[57]Hyung-Kew Lee, Sun-Il Chang, and Euisik Yoon, "A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment," JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 6, DECEMBER 2006

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top