跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭誥廷
研究生(外文):Gao-Ting Cheng
論文名稱:高頻微機電探針卡製程設計與製作
論文名稱(外文):Design and Fabrication of RF MEMS Probe Card
指導教授:黃榮堂黃榮堂引用關係林震林震引用關係
口試委員:呂學士李春穎
口試日期:2012-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:111
中文關鍵詞:高頻探針卡微機電玻璃
外文關鍵詞:RFProbe CardMEMSGlass
相關次數:
  • 被引用被引用:0
  • 點閱點閱:688
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
以目前半導體製程而言,所採用基底介質普遍為矽基底,雖然台灣在此種製程作法相當成熟,但當考慮到高頻所產生的寄生效應與高頻反射現象後,其效果仍是有待改善,之後為了進一步改善結構特性,將基底介質改為對於高頻傳輸特性有明顯提升的玻璃(Glass)作為基板,在未來與Through Glass Via (TGV) 技術結合將傳輸線接至結構背面,以利後方裝置連接。
目前為止,利用微機電技術所研製的探針有些許功能上的限制如低的探針接觸力、複雜的製作過程與操作於高頻時會有非常大的傳輸損失。換句話說,一般的微機電探針卡關鍵的問題,在於每根探針無法承受或產生足夠的力量來刺穿金屬氧化層並操作於高頻段環境。而本研究預計製作可應用於高頻傳輸的微機電探針,一開始利用模擬軟體Ansoft HFSS與Ansys Workbench得到其S11> -20dB、S12 > -1dB與模擬探針結構之應力、剪力及位移量,結構模擬完成後開始製造探針模穴,並以電鑄的方式沉積鎳使探針懸臂厚度增加來加強支撐懸臂的強度,之後利用研磨製程提升探針整體共面度,再與玻璃基板連接,藉由Lift-off技術釋放探針結構,並於最外層無電解電鍍上一層金,改善高頻傳輸時所產生的肌膚效應,以成功的製作出一體成型之微探針結構。
該探針結構設計為GSG形式,結構設計過程需要四道光罩相互對準,S端探針寬度50μm,G端探針寬度屬漸進式從400μm縮至50μm,間距為150μm,探針總長度為1900μm。


For the recent development of Semiconductor process, the base substrate in general is the silicon. Although the silicon process is quite mature in Taiwan but the high frequency parasitic effects and reflection phenomenon of silicon still needs to be improved. In order to improve the characteristics of silicon structure, we change the substrate to glass because it has significant high frequency transmission characteristics. In the future, with Through Glass Via (TGV) technology, the probe on the front side of the glass substrate can be connected to the transmission line on the back, and further facilitate the connection to the other electronic devices.
The probe fabricated by MEMS technology has some functional limitations such as low probe contact force, complex production process and very large transmission loss when operate at high frequency. In other words, the main issue of MEMS probe card is that each probe can’t bear or generate enough forces to puncture the metal oxide layer and operating at the high frequency environment. In this research, we fabricated MEMS probe to apply for high frequency transmission. First we used the simulation software Ansoft HFSS/Ansys Workbench to simulate the probe in terms of S-parameter S11> -20dB, S12 > -1dB, structure stress, shear force and deflection. After finishing the structural simulation, we started to manufacture the probe cavity and electro-formed nickel. The purpose is to increase thickness of Probe cantilever to enhance its strength and used the polishing process to make the thickness of the probe uniform. After polishing the wafer, we used the Lift off technology to separate probe from cavity. Finally, we coat the gold around the probe in order to reduce the skin effect.
The probe structure design for the GSG type requires four masks aligned with each other under conditions as following: width of the S-end is 50μm, the end of the G width is progressive from 400μm reduced to 50μm, probe pitch is 150μm, and the length of the probe is 1900μm.


摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻探討 4
2.1 探針卡發展過程 4
2.2 探針卡之文獻回顧 7
2.2.1 懸臂式探針卡 7
2.2.2 垂直式探針卡 8
2.2.3 薄膜矩陣垂直式探針卡 10
2.2.4 微機電式探針卡 12
2.2.5 高頻探針卡 25
第三章 微影製程技術與實驗設備簡介 30
3.1 微影製程技術簡介 30
3.2 微影製程 30
3.3半導體蝕刻原理 37
3.4 微電鑄技術 40
3.4.1電鍍法 42
3.4.2無電解電鍍法 44
3.5 共平面研磨製程 45
3.6 迴銲製程 48
3.7 氫氧化鉀( KOH )蝕刻製程 49
3.8實驗設備與材料 50
3.8.1 曝光機 50
3.8.2 光阻旋塗機 51
3.8.3 烘烤設備 52
3.8.4 光阻劑 52
3.8.5 反應離子蝕刻機(reactive ion etch, RIE) 53
3.8.6電鑄設備 54
3.8.7研磨機 56
3.8.8回銲設備 57
3.8.9 高頻電性量測設備 58
3.8.10 針壓量測設備 61
第四章 微機電高頻探針卡設計與製作流程 64
4.1 設計流程 64
4.2 高頻探針結構模擬與設計 65
4.2.1 高頻探針模型之模擬設計-ANSYS Workbench 65
4.2.2 高頻探針模型之模擬設計-Ansoft HFSS 69
4.3 光罩佈局圖簡介 73
4.4 CMOS-MEMS探針卡製作流程設計 79
4.4.1 製程設計流程1 79
3.4.2 製程設計流程2 81
第五章 實驗結果與分析 83
5.1 高頻探針結構製程製作 83
5.2 高頻探針組裝與電性量測 95
5.3 高頻探針力量量測 101
第六章 結論與未來展望 105
6.1 結論 105
6.2 未來展望 106
參考文獻 107



[1]M. Beiley, J. Leung, and S. Wong, “A Micromachined Array Probe Card-Characterization,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B. Advanced Packaging, Vol. 18, 1995, pp. 184-191.
[2]S. Maekawa, M. Takemoto, Y. Kashiba, Y. Deguchi, K. Miki, T. Nagata, “Highly Reliable Probe Card For Wafer Testing,” Electronic Components and Technology Conference, Las, Vegas, May 2000, pp. 1152-1156.
[3]http://www.formfactor.com/
[4]http://www.jemam.com/
[5]http://www.knstaiwan.com/prodserv/test-division/products
[6]http://www.aps-munich.de/mjc_start.htm
[7]http://www.instrumentationgroup.com/w_Wahl/thermocouple
[8]http://www.mpi.com.tw
[9]http://www.spirox.com.tw
[10]http://www.seiken.com.tw
[11]http://ads.chinatimes.com/0405/chipmos/
[12]http://www.seaj.or.jp/
[13]http://www.swtest.org
[14]D. Y. Chang, J. T. Choi, “Geometric parameter design of a cantilever probing needle used in epoxy ring probe card, ” Journal of Materials Processing Technology, Taipei, Taiwan , Jan., 2008,
[15]http://www.kns.com
[16]T. H. Lin, H. Yang, C. K. Chao, M. S. Yeh, “New fabrication method for micro-pyramidal vertical probe array for probe cards,” Microsyst Technol, Dec. 2009, pp. 1215-1220.
[17]D. S. Liu, C. M. Chang, J. Liu, S. C. Ho, H. Y. Tsai, “Novel analysis model for investigation of contact force and scrub length for design of probe card, ” Microelectronics Reliability 50 (6), 2010, pp. 872-880.
[18]http:// www.accuprobe.com
[19]K. F. Zimmemann, “SiProbe-a new technology for wafer probing”, International Test Conference IEEE, Washington, USA, 1995, pp. 106-112.
[20]S. Sasho and T. Sakata, “Four multi probing test for 16 bit DAC with vertical contact probe card”, International Test Conference IEEE, Washington, USA, 1996, pp. 86-91.
[21]M. Beiley, J. Leung, and S. S. Wong, “A micromachined array probe card-fabrication process”, IEEE Transaction on computer, packaging and manufacturing technology-Part B, vol.18, no.1, 1995, pp. 179-183.
[22]M. Beiley, J. Leung, and S. S. Wong, “A micromachined array probe card-characterization”, IEEE Transaction on computer, packaging and manufacturing technology-Part B, vol. 18, no.1, 1995, pp. 184-191.
[23]Y. Zhang, Y. Zhang, D. Worsham, D. Morrow, and R. B. Marcus, “A new MEMS wafer probe card”, MEMS’97, Nagoya, Japan, Jan, 1997, pp. 395-399.
[24]Y. Zhang, Y. Zhang, and R. B. Marcus, “Thermally actuated microprobes for a new wafer probe card”, Journal of MEMS, vol. 8, no.1, 1999, pp. 43-49.
[25]I. Takahiro, R. Sawada, and E. Higurashi “Micro IC probe for LSI testing”, IEIC Technical Report, vol. 99, no.456, 1999, pp.21-26.
[26]I. Takahiro, R. Sawada, and E. Higurashi, “Fabrication of micro IC probe for LSI testing”, Sensors and Actuators A: Physical, vol. 80, 2000, pp. 126-131.
[27]J. Y. Park, D. S. Lee, D. K. Kim, and J. H. Lee, “Fabrication of a bump-type Si probe card”, International Microprocesses and Nanotechnology Conference, Tokyo, Japan, July 2000, pp. 76-77.
[28]B. H. Kim, S. Park, B. Lee, J. H. Lee, B. G. Min, S. D. Choi, D. I. Cho, and K. Chun, “A novel MEMS Silicon probe card”, MEMS’02, Las, Vegas, Nevada, USA, Jan. 2002, pp. 368-371.
[29]T. Itoh, S. Kawamura, T. Suga, K. Kataoka,“Development of an electrostatically actuated MEMS switching probe card”, Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, Seattle, 2004, pp. 226-230.
[30]Y. Cho, T. Kuki, Y. Fukuta, H. Fujita, and B. Kim, “Si-based micro probe card with sharp knife-edged tips combined metal deposition”, Transducers’03, vol.1, 2003, pp. 774-777 .
[31]Y. Cho, T. Kuki, Y. Fukuta, H. Fujita, and B. Kim, “Fabrication of sharp knife-edged micro probe card combined with shadow mask deposition”, Sensors and Actuators A: Physical, vol.114, 2004, pp. 327-331 .
[32]K. Kataoka, T. Itoh, K. Inoue, and T. Suga, “Multi-layer electroplated micro-spring array for MEMS probe card”, MEMS’04, Maastricht, The Netherlands, January 2004, pp. 733-736.
[33]Si-Hyung Lee, and B. C. Kim, “Curled micro-cantilevers using benzocyclobutene polymer and Mo for wafer level probing”, Sensors and Actuators A: Physical, vol. 121, 2005, pp. 472-479.
[34]N. Guo, X. Li, F. Wang, Y. Wang, and S. Feng, “MEMS probe card with tip-to-pad electric feed-through and automatically isolated metal coating”, Transducers’05, vol. 2, June 2005, pp. 1330-1333.
[35]F. Wang, X. Li, N. Guo, Y. Wang, and S. Feng, “A silicon cantilever probe card with tip-to-pad electric feed-through and automatically isolated metal coating”, J. Micromech. Microeng., vol. 16, 2006, pp. 1215-1220.
[36]T. Namazu, S. Inoue, Y. Tashiro, Y. Okamura, and K. Koterazawa, “Ti–Ni SMA Film Actuated Si Cantilever Beams for MEMS Probe Card”, Transducers’05, vol. 1, 2005, pp. 733-736.
[37]T. Namazu, Y. Tashiro, and S. Inoue, “Ti–Ni shape memory alloy film-actuated microstructures for a MEMS probe card”, J. Micromech. Microeng., vol. 17, 2007, pp. 154-162.
[38]F. Wang, X. Li, and S. Feng, “A MEMS probe card with 2D dense-arrayed ‘hoe’-shaped metal tips”, J. Micromech. Microeng., vol. 18, no. 5, 2008, pp. 1-8.
[39]J. Liu, M. Noman, J.A. Bain, T.E. Schlesinger and G.K. Fedder, “CMOS-MEMS probes for reconfigurable IC’s”, MEMS’08, Jan. 2008, pp. 517-518.
[40]C. Folk, “Mechanical Design of MEMS Probes for Wafer Test”, The 18th Annual IEEE Semiconductor Wafer Test Workshop, 2008.
[41]Jeremy Burr, Gregory Nordgren, Eric W. Strid, and Kimberly R.Gleason, “Coaxial Wafer Probe With Tip Shielding”, United State Patent#5,565,788, Oct.15, 1996.
[42]Gregory G. Boll and Harry J. Boll, “Broadband Impedance Matching Probe”, United State Patent#6,229,327B1, May 8, 2001.
[43]Mark D. Heal and John R. Grebliunas, “Microwave Probe For Surface Mount And Hybrid Assemblies”, United State Patent#2002/0011855 A1, Jan.31, 2002.
[44]William Knauer, “High Frequency RF Interconnect for Semiconductor Automatic Test Equipment”, United State Patent#US6,900,649 B1, May 31,2005.
[45]Gregory G. Boll and Harry J. Boll, “Probe Card for High Speed Testing”, United State Patent#2006/10158206 A1, July 20, 2006.
[46]Gregory G. Boll and Harry J. Boll, “Integrated Circuit Probing Apparatus Including A Capacitor bypass Structure”, United State Patent#5373231, December 13, 1994.
[47]Chi-Hsing Hsu , Jimmy Hsu, “SURROUNDING STRUCTURE FOR A PROBE CARD”, United State Patent#200510253604 A1, November 17,2005.
[48]H. Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, 2001, pp. 342-343.
[49]Marc Madou, “Fundamentals of Microfabrication”, CRC Press, 1997, pp.74-76.
[50]F. Laermer, A. Schilp, “Method for anisotropic plasma etching of substrates”, United State Patent #5498312, 1996.
[51]F. Laermer, A. Schilp, “Method of anisotropically etching silicon”, United State Patent #5501893, 1996.
[52]A.M. Hynes, et al., “Recent advances in silicon etching for MEMS using the ASETM process“, Sensors and Actuators, vol. 74, 1999, pp. 13-17.
[53]Phil LoPiccolo ,”Controlling Wet Etch Processes”, Solid State Technology, vol. 50, 2007, pp. 20-23.
[54]J. Bhardwaj, H. Ashraf, A. McQurarrie, “Dry etching silicon for MEMS”, Surface Technology Systems Limited, 1997.
[55]郭文正,高深寬比懸浮微結構之製程開發及在微機電式光開關的應用,博士論文,國立台灣大學機械工程研究所,台北,2006。
[56]H. Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, 2001, pp. 342-343.
[57]Marc Madou, “Fundamentals of Microfabrication”, CRC Press, 1997, pp.74-76.
[58]S. Gao, “New technologies for lead-free flip chip assembly,” Thesis of Imperial College London, United Kingdom, 2005, pp. 54-55.
[59]國科會精儀中心,微機電系統技術與應用,新竹:全華科技圖書公司,2004, 第213-214頁。
[60]http://www.omega-hc.com/plating/book2.htm
[61]http://plating.myweb.hinet.net/npl/b/1.htm
[62]P. B. Zantye, A. Kμmar, A. K. Sikder, “Chemical Mechanical Planarization for Microelectronics Application”, Materials Science and Engineering, Vol. 45, No. 3-4, pp. 89-220, 2004
[63]C. Y. Huang, Y. F. Lin, S. C. Chi, Y. Y. Su, “Using the Taguchi Method to Optimize a Lead-Free Reflow Soldering Process”, Journal of Science and Engineering Technology, Vol. 3, No. 2, pp. 99-111, 2007.
[64]S. Wolf, R. N. Tauber, “Silicon Processing for the VLSI Era”, Process Technology, Vol. 1, pp. 434-438, 1986.
[65]http://www.cleanroom.byu.edu/KOH.phtml
[66]http://apialliance.com/pdf/JSR.pdf
[67]X. Wei, C. H. Lee, Z. Jiang and K. Jiang, “Thick Photoresists for Electroforming Metallic Microcomponents”, Journal of Mechanical Engineering Science, Vol. 222, No. 1, pp. 37-42, 2008.
[68]G. J. Wang, K. H. Ho, C. C. Hsueh, “Biodegradable Polylactic Acid Microstructures for Scaffold Applications”, Microsystem Technologies, Vol. 14, No. 7, pp. 989–993, 2008.
[69]NCKU Micro-Nano Technology Center/Southern Region MEMS Center
[70]http//:www.shccl.com.tw


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊