跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉國晏
研究生(外文):Guo-Yan Liu
論文名稱:高真空壓鑄法製備陣列式錫鉛合金奈米線氣體感測器
論文名稱(外文):The Tin-Lead alloy gas sensor array nanowire manufacturing with die-casting in high vacuum
指導教授:張合
口試委員:高木榮陳蓉萱郭金國
口試日期:2012-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:錫鉛合金陽極氧化鋁真空壓鑄金屬半導體氣體感測元件
外文關鍵詞:Tin-Lead alloyAAOVacuum die-castingMetal semiconductor gas sensor.
相關次數:
  • 被引用被引用:2
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
二氧化錫在氣體偵測器應用方面是一種極為普遍使用的材料,因為其在還原性氣氛中會與氧化物表面吸附的氧氣反應造成電阻的改變。過去已成功地應用在偵測或辨別多種有毒氣體及可燃燒性的氣體,如一氧化碳、二氧化氮、硫化氫、乙醇、甲烷等等。本研究首先利用真空壓鑄方式將亞共晶、共晶與過共晶相熔融的錫鉛合金金屬溶液鑄入陽極氧化鋁奈米模板中,待金屬液固化後,可得到陣列式錫鉛合金奈米線,經熱處理得到氧化後的陣列式錫鉛合金奈米線,再以濕蝕刻方式將模板移除使線材裸露,最後於上方蒸鍍銅薄膜完成金屬半導體氣體感測元件製作。而元件之成份、微結構及性質檢測則以Mapping、EDS、SEM、TEM、XRD與DSC做分析。本文之目的在研究以薄膜式感測器元件作為對照組,而陣列式奈米線感測元件作為設計組,將兩組元件置於相同檢測條件中,比較其對一氧化碳響應之靈敏度。而氣體檢測部分則是自行設計之量測平台,藉由MFC控制待測氣體濃度,再以自己撰寫之LabView進行微訊號量測與訊號數據擷取,最後證實具陣列式奈米線之感測元件比表面積遠大於薄膜式感測元件,因此靈敏度大幅上升,於濃度500ppm一氧化碳氛圍下顯示,具有奈米線陣列之感測元件靈敏度排列順序SnO2(25.13%)>Sn70%-Pb30%(17.83%)>Sn63%-Pb37%(14.89%)>Sn50%-Pb50%(14.02%)。

SnO2 is a very common materials used in gas sensor applications, caused by the change of resistance in a reducing atmosphere with the oxygen of the oxide surface adsorption reaction. Has been successfully applied to detect or identify a variety of toxic gases and combustion gases, such as CO, NO2, H2S, C2H6O2, CH4, etc. In this study, the use of vacuum die-casting will hypoeutectic, eutectic and hypereutectic molten tin-lead alloy molten metal cast into the nano template of anodic aluminum oxide(AAO), after curing of the liquid metal, the available array of tin-lead alloy nanowires after heat treatment oxidation array of tin-lead alloy nanowires, use wet etching to remove the template so that the wire bare copper thin films to complete device fabrication. Finally, on top of steamed copper thin films of metal semiconductor gas sensor production. The components of the composition, micro structure and nature of the detection while the Mapping、EDS、SEM、TEM、 XRD and DSC for analysis. The purpose of this study thin film sensor element as a control group, while the array of nanowire sensing element as a design group, the two groups of components in the same testing conditions, comparison of the sensitivity of the carbon monoxide response. Gas detection part is to design the measurement platform, the concentration of gas to be measured by MFC controls, signal measurement and signal data capture their writing LabView, finally confirmed with arrays of nanowire sensing element is much larger than than the surface area of thin film sensing element, therefore, the sensitivity increased substantially, the concentration of 500 ppm carbon monoxide atmosphere, nanowire array sensitivity of the sensing elements arranged in order SnO2(25.13%)>Sn70%-Pb30%(17.83%)>Sn63%-Pb37%(14.89%)>Sn50%-Pb50%(14.02%).

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究目的及動機 2
1.3 陣列式陽極氧化鋁模板簡介 3
1.4 錫鉛合金簡介 5
1.5 感測器簡介 6
1.5.1 氣體感測器反應機制 7
1.5.2 氣體感測器性能要素 8
1.6 研究流程與論文架構 11
第二章 基礎理論與文獻回顧 14
2.1 陽極氧化鋁文獻回顧 14
2.1.1 陽極氧化鋁成長因素與機制 14
2.1.2 陽極氧化鋁製備方式與結構 21
2.2 金屬熔煉與鑄造介紹 24
2.2.1 一維奈米線製程介紹 26
2.2.2 鉛錫合金之電遷移效應與應用 32
2.3 氣體感測器發展與種類 39
2.3.1金屬半導體氣體感測器 39
2.3.2電化學氣體感測器 41
2.3.3固態電解質氣體感測器 43
2.3.4觸媒燃燒式氣體感測器 44
2.3.5光電式氣體感測器 46
2.3.6場效電晶體氣體感測器 46
2.3.7壓電型氣體感測器 47
第三章 陣列式鉛錫合金奈米線氣體感測元件設計與製作 50
3.1 陽極氧化鋁奈米模板製作 50
3.1.1 實驗方法與流程 50
3.1.2 電解拋光 51
3.1.3 一次陽極化處理 52
3.1.4 鉻酸蝕刻 53
3.1.5 二次陽極化處理 54
3.1.6 去背蝕刻與薄膜通孔 55
3.2 錫鉛合金真空熔煉 57
3.2.1 實驗方法及流程 57
3.3 真空壓鑄法製備陣列式錫鉛合金感測元件 62
3.3.1 實驗方法及流程 63
第四章 實驗結果與討論 65
4.1 陽極氧化鋁奈米模板探討 65
4.2 合金檢測與成份分析 66
4.2.1 Mapping成份分析 66
4.2.2 EDS成份分析 68
4.2.3 XRD性質檢測 69
4.2.4 DSC性質檢測 70
4.3 錫鉛合金奈米線微結構檢測 72
4.4 一氧化碳氣體檢測系統 74
4.5 氣體檢測 75
4.5.1 實驗程序 75
4.5.2 一氧化碳氣體檢測 76
4.5.2.1 SnO2 100%訊號量測 77
4.5.2.2 亞共晶Sn50%-Pb50%訊號量測 79
4.5.2.3 共晶Sn63%-Pb37%訊號量測 80
4.5.2.4 過共晶Sn70%-Pb30%訊號量測 82
4.6 氣體檢測訊號跳動與修正 84
第五章 結論與未來展望 85
5.1 結論 85
5.2 未來展望 86
參考文獻 88


[1]蔡嬪嬪,氣體感測器的新動向-微機電元件產品開發,工業材料,第150期,pp.92-95,1999。
[2]蔡嬪嬪,化學微感測器-氣體微感測器,電子月刊,第二卷,第四期,pp.63-66,1996。
[3]T. Takashi, “Oxygen sensor”, Sensors and Actuators, Vol.14, no.1, pp.109-110, 1994.
[4]Sze, S. M., Semiconductor Sensor, John Wiley & Sons, New York, pp.1-15, 1994.
[5]藤元薰,擔持金屬觸媒 Ni 選擇性的制抑,Vol. 22,No. 71,1984。
[6]林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料157期,163-169頁,2000年1月。
[7]林鴻明,超微粒半導體氣體感測材料之性質研究,工程科技通訊,第五十九期,2001年12月,pp.52-56。
[8]J. D. Lemay, R. W. Happer, MRS Bulletin, 31, 1990.
[9]“Synthesis of Low-density Microellular Materials”, MRS Bulletin/December, 21, 1990.
[10]T. Nakamoto, H. Takagi, S. Utsumi, and T. Moriizumi, Sensors and Actuators B 8, pp. 181-186, 1992.
[11]T. Nakamoto, A. Fukuda, and T. Moriizimi, Sensors and Actuators B 10, 8590, 1993.
[12]B. Bourrounet, T. Talou and A. Gaset, Sensors and Actuators B 26-27, 250-254, 1995.
[13]G. Martinelli, M.C. Carotta, E. Traversa, and G. Ghiotti, MRS Bulletin, June, pp.30-36, 1999.
[14]楊昆霖,大面積規則陽極氧化鋁孔洞之研製與相關運用,碩士論文,國立中山大學光電工程研究所,高雄,2007。
[15]Masuda, H. & Fukuda, K. Ordered, “metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, pp.1466-1468, 1995.
[16]O. Jessensky, F. Müller, U. Gösele,“Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,”Appl. Phys. Lett. , Vol. 72, pp. 1173, 1998.
[17]Perez, I., Robertson, E., Banerjee, P., Henn-Lecordier, L., Son, Lee, S.B., Rubloff, G.W.“TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures”, Small, Vol. 4(8), pp. 1223, 2008.
[18]R. J. Tonucci, B. L. Justus, A. J. Campillo and C. E. Ford, “Nanochannel array glass”, Science, Vol. 25, no. 5083, pp. 783-785, 1992.
[19]T. W. Whitney, J. S. Jiang, P. C. Searson and C. L. Chien, “Fabrication and magnetic properties of arrays of metallic nanowires”, Science, Vol. 261, no. 5126, pp. 1316-1319, 1993.
[20]楊哲明,共晶組成錫基合金之電衝擊破壞特性研究,碩士論文,國立成功大學材料科學及工程學系,台南,2003。
[21]鄒秉環,與CMOS製程相容之奈米碳管微機電氣體感測器,碩士論文,國立臺北科技大學製造科技研究所,台北,2007。
[22]Johan H. Huijsing, “Integrated smart sensor”, Sensors and Actuators A, Vol. 30, pp. 167-174, 1992.
[23]C.C. Lu, J.W. Gardner and F. Udrea, “Design and Development of SOI MOSFET Micro Gas Sensors”, 科儀新知, Vol. 22, no. 5, pp. 76-90, 2001.
[24]T. Valand, K. E. Heusler,“Reactions at the Oxide/Electrolyte Interface of Anodic Oxide Films on AluminumJ. Electronal”, . Chem., Vol. 149, pp. 71 ,1983.
[25]G. E. Thompson, Thin solid films. Vol. 297, pp. 192, 1997.
[26]O. Jessensky, F. Muller and U. Gosele,“Self-organized formation of hexagonal pore arrays in anodic alumina”, Appl. Phys. Lett., Vol. 72, no. 10, pp. 1173-1175, 1998.
[27]G. E. Thompson,“Porous anodic alumina fabrication characterization and applications”, Thin solid films, Vol. 297, no. 1-2, pp. 192-201, 1997.
[28]V. P. Parkhutik and V. I. Shershulsky, “Theoretical modeling of porous oxide growth on aluminum”, J. Phys. D: Appl. Phys. Vol. 25, pp. 1258, 1992.
[29]Sunil Kumar Thamida and Hsueh-Chia Chang,“Nanoscale pore formation dynamics during aluminum anodization”, CHAOS, Vol. 12, pp. 240-251, 2002.
[30]Shoso Shingubara, Osamu Okino, Yasuyuki Sayama, Hiroyuki Sakaue and Takayuki Takahagi,“Ordered Two Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum”, Jpn. J. Appl. Phys., Vol. 36, pp. 7791, 1997.
[31]O. Jessensky, F. Müller, U. Gösele,“Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina”, ppl. Phys. Lett., Vol. 72, pp. 1173, 1998.
[32]Shoso Shingubara, Osamu Okino, Yasuyuki Sayama, Hiroyuki Sakaue and Takayuki Takahagi,“Ordered Two Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum”, Jpn. J. Appl. Phys., Vol. 36, pp. 7791, 1997.
[33]K. Nielsch, J. Choi,“Self-Ordering Regimes of Porous Alumina”, Nano Letters, Vol. 2, pp. 677, 2002.
[34]Shoso Shingubara, Osamu Okino, Yasuyuki Sayama, Hiroyuki Sakaue and Takayuki Takahagi,“Ordered Two Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum”, Jpn. J. Appl. Phys., Vol. 36, 7791, 1997.
[35]Shoso Shingubara, Osamu Okino, Yasuyuki Sayama, Hiroyuki Sakaue and Takayuki Takahagi,“Ordered Two Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum”, Jpn. J. Appl. Phys., Vol. 36, 7791, 1997.
[36]F. Li, L Zhang, Lan Zhang, and Robert M. Metzger,“On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide”, Chem. Mater., Vol. 10, 2470 1998.
[37]Ailing Cai, Haoyue Zhang, Hao Hua and Zhibo Zhang,“Direct Formation of Self-Assembled Nanoporous Aluminum Oxide on SiO2 and Si Substrates”, Nanotechnology, Vol. 13, 627, 2002.
[38]F. Li, L Zhang, Lan Zhang, and Robert M. Metzger,“On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide”, Chem. Mater., Vol. 10, 2470, 1998.
[39]O. Jessensky, F. Müller, U. Gösele,“Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina”, Appl. Phys. Lett., Vol. 72, 1173, 1998.
[40]陳建仲,利用模板法研究錫奈米線與奈米球之製作與特性,博士論文,國立交通大學材料科學與工程系所,新竹,2005。
[41]Li. Y, Meng G. W. and Zhang L. D., Appl. Phys. Lett. 76 2011, 2000.
[42]黃俊維,利用陽極氧化鋁蝕刻遮罩製作奈米多孔性氣體感測器之方法,碩士論文,國立臺北科技大學機電整合研究所,台北,2007。
[43]A. P. Li, F. Muller, A. Birner, K. Nielsch and U. Gosele,“Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina”, Journal of Appl. Phys., Vol. 84, no. 11, pp. 6023-6026, 1998.
[44]Y. D. Wang, S. J. Chua, M. S. Sander, P. Chen, S. Tripathy and C. G. Fonstad, Appl. Phys. Lett., Vol. 85, pp. 816-818, 2004.
[45]Hidetaka Asoh, Mamoru Matsuo, Megumi Yoshihama, and Sachikono, Appl. Phys. Lett., Vol. 83, pp. 4408-4410, 2003.
[46]H. Masuda and M. Satoh, Jpn. J. Appl. Phys., Part2, Vol. 35, pp. L126-L129, 1996.
[47]M. S. Sander, L. S. Tan, Adv. Funct. Master. Vol. 13, pp. 393-397, 2003.
[48]張晉昌,鑄造學,台北:全華圖書出版公司,1987。
[49]張志誠,奈米技術,全面報到,就業情報,No.319,2002年,第43頁。
[50]張立德,牟季美,奈米材料和奈米結構,北京:科學出版社,2001年,第27頁。
[51]張亞利,郭玉國,孫典亭,材料科學與工程,No.19,2001,第131頁。
[52]Landman Uzi, Luedtke W D, Barnet, R N. NATOASI Ser.E, No. 340, pp. 109, 1997.
[53]Tager A A,.Routke Vitch D, Haimy Rrma J, et al.NATO ASI Ser. E No. 323, pp. 171, 1996.
[54]Ledentsoy N N, Prog Cryst Crowth Charact Mater., No. 35(2~4), pp. 289, 1998.
[55]Tang Y H, Zhang YF, Lee C S et al.Mater Res Soc Symp Proc., No. 526, pp. 73, 1998.
[56]Zhang Y F,Tang YH,Wang N et al.Mater Res Soc SymP Proc., No. 507, pp. 993, 1999.
[57]Morlaes A M, Lieber C M. Semiconductor nanowires Science., No. 279, pp. 208, 1998.
[58]Hu Jiangtao,Odom Teri Wang, lieber Charles M.Acc Chem Res., No. 32(5), pp. 435, 1999.
[59]Palasantzas G, Dge B, De Nijs J, GEERLIGS L J. J Appl phys., No. 85(3), pp. 1907, 1999.
[60]Wang N, Tang Y H, Zhang Y F, Lee C S, Lee S T. Phys Rev. B: Condens Matter Mater Phys., No. 58 (24): R16024, 1998.
[61]Wang N, Zhang Y F, Tang Y H et al. Appl Phys Lett., No. 73(26), pp. 3902, 1998.
[62]R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, pp. 89, 1964.
[63]M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber and P. D. Yang, Adv. Mater. 13, pp. 113, 2001.
[64]Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto and D. R. M . Walton, J. Mater. Chem. 8, pp. 1859, 1998.
[65]H. Takikawa, M. Yastsuki and T. Sakakibara, Jpn. J. Appl. Phys. 38, L401(1999)
[66]C. H . Liang, L. D. Zhang, G. W. Meng, Y. W. Wang and Z. Q. Chu, J. Noncrvst. Solids. 277, pp. 63, 2000.
[67]X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun and J. J. Du, Chem. Phys. Lett. 336, pp. 53, 2001.
[68]Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. LEE, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim, Adv. Mater. 12, pp. 746, 2000.
[69]W. Q. Han, P. Kohler-Redlich, F. Ernst and M. Ruhle, Solid State Comm. 115, pp. 527, 2000.
[70]S. Bandyopadhyah and H. S. Nalwa, Quantum Dots and Nanowires; American Scientific Publishers, 2003.
[71]謝育忠,電遷移對純錫導線晶粒旋轉之研究,博士論文,國立中央大學化學工程與材料工程學系,桃園,2009。
[72]V. B. Fiks, Sov. Phys. Solid state., 1, pp. 14-28, 1959.
[73]H. B. Huntington, and A.R. Grone, J. Phys. Chem. Solids, 20, pp. 76-87, 1961.
[74]K. N. Tu, J. Appl. Phys., Vol. 94, pp. 5451, 2003.
[75]C. Y. Liu, C. Chen, C. N. Liao, K. N. Tu, Appl. Phys. Lett. Vol. 75, pp. 58, 1999.
[76]Jae-Young Choi, Sang-Su Lee, Young-Chang Joo, Jpn. Appl. Phys., Vol. 41, pp. 7487, 2002.
[77]Jae-Young Choi, Sang-Su Lee, Jong-Min Paik, Young-Chang Joo, IEEE Electronic Materials and Packaging., pp. 417, 2001.
[78]C. Y. Liu, Chin Chen, and K. N. Tu, J. Appl. Phys., Vol. 88, pp. 5703, 2000.
[79]Q. T. Huynh, C. Y. Liu, C. Chen, K. N. Tu, J. Appl. Phys., Vol. 89, pp. 4332, 2001.
[80]H. Gan, W. J. Choi, G. Xu, K. N. Tu, JOM, 6, 34, 2002.
[81]H. Gan, K. N. Tu, J. Appl. Phys., 97, 063514, 2005.
[82]Hersch P,“Galvanic determination of traces of oxygen in gases”, Nature, vol. 169, pp. 792-793, 1952.
[83]P. B. Weise,“Effect of electronic charge transfer between adsorbate and solid on chemisorption and catalysis”, J. Chem. Phys, vol. 21, no. 2, pp. 1531-1538.
[84]J. Weissbart and R. Ruka,“Oxygen gauge”, Review of Scientific Instruments., vol. 32, no. 5, 1961, pp. 593-595, 1953.
[85]Tetsuro Seiyama, Akio Kato, Kiyoshi Fujiishi, Masanori Nagtani,“A new detector for gaseous components using semiconductive thin films”, Anal. Chem., vol. 34, no. 11, pp. 1502-1503, 1962.
[86]I. Lundstrom, S. Shivaraman, C. Svensson and L. Lundkvist,“A hydrogen sensitive MOS field-effect transistor”, Appl. Phys. Lett., vol. 26, no. 2, pp. 55-57, 1975.
[87]蔡嬪嬪、曾明漢,氣體感測器之簡介、應用及市場,材料與社會,第六十八期,1992年,第50-56頁。
[88]Jing Kong, Nathan R. Franklin, Chongwu Zhou, Micheal G. Chapline, Shu Peng, Kyeongjae Cho and Hongjie Dei,“Nanotube molecular wire as chemical sensors”, Science., vol. 287, no. 5453, pp. 622-625, 1999.
[89]Hisao Ohmishi, Hirokazu Sasaki, Takeshi Marsumoto and Masmichi Ippommatsu,“Sensing mechanism of SnO2 thin gas sensor”, Sensors and Actuators B., vol. 14, no. 1-3, pp. 677-678, 1993.
[90]G. Sberveglieri,“Gas sensors”, Kluwer Academic Publishers., 1992.
[91]莊睦賢、黃炳照,電化學感測器,化工技術,第七卷,第二期,1999年。
[92]Moseley, P. T., Norries, J. O. W., Willians and D. E.,“Techniques and mechanisms in gas sensing”, Adam Hilger., New York, 1990.
[93]周瑞福,氣體感測器原理與應用,綠能與環境,第77期,2011年。
[94]林立德,光纖概論,台北:全華科技圖書公司,1987。
[95]廖得照、黃素貞,光纖技術手冊,台北:全華科技圖書公司,1995。
[96]H. N. Mcmurray,“Novel thin optical film sensors for the detection of carbon dioxide,” J. Mater. Chem., vol. 2, no. 4, pp. 401-406, 1992.
[97]I. Lundstrom, S. Shivaraman, C. Svensson and L. Lundkvist,“A hydrogen sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol. 26, no. 2, pp. 55-57, 1975.
[98]Chih-Cheng Lu, D. Setiadi, F. Udrea, W.I. Milne, J.A. Covington, J.W. Gardner,“3D thermo-electro-mechanical simulations of gas sensors based on SOI membranes”, Proceeding of the 3rd International Conference on Modeling and Simulation of Microsystems (MSM 2000)., San Diego, USA, pp. 297-300, 2000.
[99]Syverud, “JANAF Thermochemical Table”, 3rd., ed., J. Phys. Chem. Ref. Data, 1985.
[100] Barin, “Thermochemical Data of Pure Substances”, Germany, 1989.
[101] G. Smith, Phase Diagram for Ceramics, J. Am.Cream. Soc. 1981; 4.
[102] Eric A. Brandes, Semithells Metals Reference Book 6th edition, Butterworth & Co. Publisher Ltd. (1983), USA, 14-8.
[103] Z. Zhang, D. Gekhtman, Chem. Mater., Vol. 11, pp. 1659, 1999.
[104] 美國國家消防協會NFPA(National Fire Protection Association)編著之防火手冊。
[105] 吳聲波,改良陽極氧化鋁方法製作奈米多孔性氣體感測器,碩士論文,國立臺北科技大學機電整合研究所,台北,2010。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top