跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許展榕
研究生(外文):CHAN-JUNG HSU
論文名稱:應用於基因傳遞之超音波導波管設計優化與評析
論文名稱(外文):Optimization and Characterization of an UltrasonicWaveguide Probe Applied for Gene Delivery
指導教授:呂志誠
口試委員:郭桂林蘇正煌
口試日期:2012-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:多重物理耦合分析微氣泡穴蝕效應基因傳遞優化超音波
外文關鍵詞:Comsol MultiphysicsMicrobubbleCavitationGene deliveryOptimizationUltrasonic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於優化超音波導波管輸出聲壓場。藉由Comsol Multiphysics多物理耦合軟體將壓電模組、聲學模組及固體力學模組予以耦合模擬出超音波聲場。於單一頻率下將圓柱型導波管施予不同倒圓角(fillet)及倒角(chamfer)尺寸,其量測結果顯示施予倒圓角22mm輸出聲場強度優於舊制超音波導波管聲壓強度22%。穴蝕效應(cavitation)分為穩態穴蝕效應(stable cavitation)與慣性穴蝕效應(inertial cavitation),先前本研究團隊使用HAEC (human aortic endothelial cells, 人類主動脈內皮細胞)作為基因傳遞實驗的細胞。利用慣性穴蝕效應的特性,將基因送入HAEC內,慣性穴蝕效應亦指微氣泡會隨著時間反覆的收縮與膨脹最終破裂的現象,破裂所散發出來的能量能增強細胞膜的通透性以利於DNA送入細胞內,因此本文以微氣泡破裂的數目來判斷引發穴蝕效應的多寡。吾以倒圓角22mm超音波導波管與舊制超音波導波管分別施打超音波於兩種不同的商用微氣泡,並以顆粒計數器(Multisizer 3)觀察微氣泡殘留顆數,經由實驗結果顯示新制超音波導波管能使微氣泡能更有效的破裂,並且達成超音波導波管的優化。

The study aimed to optimize the output sound pressure field of the ultrasonic waveguide tube. By using Comsol Multiphysics multi-physics coupling software to couple piezoelectric modules, acoustic modules, and solid mechanics module to simulate the ultrasonic sound field. Analyzing different fillet and chamfer sizes of the cylindrical waveguide tube under single frequency, And the result indicates that the output sound field of 22mm fillet is more intensive than the old sound pressure of ultrasonic waveguide tube by 22%. Cavitation is divided into stable cavitation and inertial cavitation, our research team used HAEC (human aortic of endothelial cells, human aortic endothelial cells) as an experimental gene transfer cells previously, and via the characteristic of inertial cavitation to deliver genes into HAEC; inertial avitation stands for the phenomenon of repeatedly contraction and expansion of micro-bubbles which eventually rupture, and the energy of rupture enhances the permeability of cell membrane that facilitate DNA transmitting into cells, hence determine the size of the cavitation by the number of rupture micro-bubbles. Apply ultrasound on two different commercial micro-bubbles by 22mm fillet ultrasonic waveguide tube and old ultrasonic waveguide tube, and observe the residual pieces of micro-bubbles by (Multisizer 3), and the experimental result indicates that the new ultrasonic waveguide tube enabled more efficient rupture of micro-bubbles and achieved the optimization of ultrasonic waveguide tube.

摘 要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻探討 2
1.3 研究動機與目的 6
1.4 論文架構 7
第二章 基本原理 8
2.1 超音波基本理論 8
2.1.1 超音波介紹 8
2.1.2 超音波之反射、折射與穿透 10
2.1.3 超音波之指向性 12
2.1.4 超音波近場與遠場 13
2.1.5 超音波之参數與聲壓強度 14
2.2 壓電原理 16
2.2.1壓電材料 16
2.2.2壓電材料參數 17
2.2.3壓電方程式 18
2.3 超音波生物效應 19
2.3.1 熱效應 19
2.3.2 穴蝕效應 19
第三章 超音波模擬與分析 22
3.1 COMSOL 分析軟體介紹 22
3.2 COMSOL設定 23
3.2.1 超音波導波管幾何形狀及材料設定 25
3.2.2 聲壓模組設定 28
3.2.2.1 完美匹配層 28
3.2.2.2 聲學邊界條件設定 29
3.2.3 壓電模組設定 29
3.2.4 固體力學模組設定 31
3.2.5 網格設定 32
3.2.6 模擬結果 33
第四章 聲場量測與分析 36
4.1 超音波導波管製作與量測 36
4.1.1 超音波導波管製作 36
4.1.2 超音波設備架構 37
4.1.3 超音波探頭 39
4.1.4 超音波訊號之即時監控 40
4.1.5 溫度控制系統 41
4.1.6 超音波強度量測 43
4.1.6.1 針狀水聽器 43
4.1.6.2 平頭狀水聽器 46
4.1.7 數據比較與分析 47
4.2 微氣泡破裂分析 49
4.2.1 慣性穴蝕效應劑量(Inertial Cavitation Dose,ICD) 50
4.2.2 商用微氣泡 52
4.2.3 實驗流程 54
4.2.4 實驗結果探討 56
4.2.4.1 微氣泡粒徑大小比較 56
4.2.4.2 微氣泡殘留數目比較 60
第五章 結論與未來展望 62
5.1 結論 62
5.2 未來展望 62
參考文獻 65


[1]A. Halama, M. Kuliñski, T. Librowski, S. Lochyñski, “Polymer-based non-viral gene delivery as a concept for the treatment of cancer,” Pharmacol Reports, vol. 61, no. 6, 2009, pp. 993-999.
[2]A. Hatefi, B. F. Canine, “Perspectives in vector development for systemic cancer gene therapy,” Gene Ther Mol Biol, vol. 13, 2009.
[3]M. Mata, S. Hao, D. J. Fink, “Applications of gene therapy to the treatment of chronic pain,” Curr Gene Therapy, vol. 8, 2008.
[4]胡育成,基因治療的過去與展望,清華電學化工系,科學發展,第372期,2003,第42-45頁。
[5]R. J. Connolly, G. A. Lopez, A. M. Hoff, M. J. Jaroszeski, “Characterization of plasma mediated molecular delivery to cells in vitro,” International Journal of Pharmaceutics, vol. 389, 2010, pp. 53–57.
[6]L. C. Phillips. A. L. Klibanov, D. K. Bowles, M. Ragosta, J. A. Hossack, B. R. Wamhoff, “Focused in vivo delivery of plasmid DNA to the porcine vascular wall via intravascular ultrasound destruction of microbubbles,” Journal of Vascular Research, vol. 47, no. 3, 2010, pp. 270-274.
[7]D. M. Hallow, A. D. Mahajan, M. R. Prausnitz, “Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries,” Journal of Controlled Release, vol. 118, no. 3, 2007, pp. 285–293.
[8]Paul D. Robbins and Steven C. Ghivizzani, “Viral vectors for gene therapy,” Pharmacol. Ther., Vol. 80, No. 1, pp. 35-47, 1998.
[9]Schatzlein AG, “Non-viral vectors in cancer gene therapy: principles and progress,” Anti-Cancer Drugs, Vol. 12, No. 4, pp. 275-304, 2001.
[10]Y. Sawada, G. Kajiwara, A. Iizuka, K. Takayama, A. N. Shuvaev, C. Koyama, H. Hirai, “High transgene expression by lentiviral vectors causes maldevelopment of purkinje cells In Vivo,” The Cerebellum, 2010.
[11]M. Kunze, A. Huber, A. Krajewski, E. Lowden, N. Schuhmann, H. Buening, M. Hallek, M. Noack, L. Perabo, “Efficient gene transfer to periodontal ligament cells and human gingival fibroblasts by adeno-associated virus vectors,” Journal of Dentistry, vol. 37, no. 7, 2009, pp. 502-508.
[12]S. Ansorge, S. Lanthier, J. Transfiguracion, Y. Durocher, O. Henry, A. Kamen, “Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures,” The Journal of Gene Medicine, vol. 11, no. 10, 2009, pp. 868-876.
[13]Eliot Marshall, “Gene therapy death prompts review of adenovirus vector,” Science, Vol. 286, Issue 5448, pp. 2244-2245, 1999.
[14]L. Q. Guo, Y. Liu, S. X. Zhao, E. X. Liu, J. F. Lin, “Highly efficient transformation of intact yeast-like conidium cells of Tremella fuciformis by electroporation,” Science in China Series C: Life Sciences, vol. 51, no. 10, 2008, pp. 932-940.
[15]S. Huth, J. Lausier, S. W. Gersting, C. Rudolph, C. Plank, U. Welsch, J. Rosenecker, “Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer,” The Journal of Gene Medicine, vol. 6, 2004, pp. 923-936.
[16]C. M. Newman, A. Lawrie, A. F. Brisken and D. C. Cumberland, “Ultrasound gene therapy: on the road from concept to reality,” Echocardiography, vol. 18, no. 4, 2001, pp. 339-347.
[17]P. Pohl, E. Rosenfeld and R. Millner, “Effects of ultrasound on the steady-statetransmembrane pH gradient and the permeability of acetic acid through bilayer lipid membranes,” Biochim Biophys Acta., vol. 1145, no. 2, 1993, pp. 279-283.
[18]O. V. Abramov, Ultrasound in Liquid and Solid Metals, CRC Press, 1994.
[19]I. V. Larina, B. M. Evers, R. O. Esenaliev, ”Optimal drug and gene delivery in cancer cells by ultrasound‑induced cavitation,” Anticancer Res, vol 25, 2005, pp. 149‑156.
[20]D. L. Miller, S. V. Pislaru, J. F. Greenleaf, “Sonoporation: mechanical DNA delivery by ultrasonic cavitation,” Somatic Cell and Molecular Genetics, vol 27, 2005, pp. 115-134.
[21]F. Nie, H. X. Xu, Q. Tang, M. D. Lu, “Microbubble-enhanced ultrasound exposure improves gene transfer in vascular endothelial cells,” World Journal of Gastroenterology, vol. 12, no. 46, 2006, pp. 7508-7513.
[22]D. E. Maayan, A. Dan, M. Marcelle, “The effects of albumin-coated microbubbles in DNA delivery mediated by therapeutic ultrasound,” Journal of Controlled Release, vol. 112, pp. 156–166, 2006.
[23]H. Guo, J. C. K. Leung, L. Y. Y. Chan, A. W. L. Tsang, M. F. Lam, H. Y. Lan, K. N. Lai, “Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat,” Gene Therapy, vol. 14, 2007, pp. 1712–1720.
[24]R. Ohata, N. Tomita, Y. Ikada, “Effect of a static magnetic field on ion transport in a cellulose membrane,” Journal of Colloid and Interface Science, vol. 270, 2004, pp. 413–416.
[25]陳永裕,“超音波及靜磁場對基因傳遞效率影響之研究-體外細胞實驗”,碩士論文,國立臺北科技大學機電整合所,台北,2007。
[26]簡瑋文,“靜磁場曝照對超音波微氣泡基因傳遞之增強效應-體外細胞實驗”, 碩士論文,國立臺北科技大學機整合所,2010
[27]K.S.Suslick,"The chemical effects of ultrasound"Scientific American",Vol.2,pp.80-86,1989
[28]P.R.Birkin,T.G.Leighton,J.F.Power,and M.D.Simpson,“Experimental and theoretical charecterixation of sonochemical cells. Part 1. Cylindrical Reactors and their use to calculate the speed of sound in aqueous solutions.",J.Phys.Chem.A,pp.306-320, 2002.
[29]J. Klíma, A.Frias-Ferrer, J.Gonza´lez-Garcı´a, J.Ludvı´k, and J.Iniesta,“Optimisation of 20 kHz conoreactor geometry on the basis of numerical smulation of local ultrasonic intensity and qualitative comparison with experimental results.",Ultrasonics Sonochemistry , Vol. 14, pp. 19–28, 2006.
[30]Vinay Raman,Ali Abbas and Sunil Chandrakant,“Mapping Local Canitation Events in High Intensity Ultrasound Fields”,COMSOL Users Conference 2006 Bangalore
[31]謝玉宸,"超音波聲化學反應器之共振模態分析與實驗",國立成功大學機械工程研究所碩士論文,2008
[32]姚宗明,”共振式聲化學反應器之分析與實驗”,國立成功大學機械工程研究所碩士論文,2009
[33]Levente Csoka,Shital N.KATEkhaye and Para R.Gogate,“Comparison of cavitational activity in different configurations of sonochemicalreactors using model reaction supported with theoretical simulations ”, Chemical Engineering Journal 178 ,2011,pp. 384– 390
[34]T.G.Leighton,“What is ultrasound?",Progress in Biophysics and Molecular Biology, Vol. 93, pp. 3-83, 2007.
[35]J. Enderle, S. Blanchard, and J. Bronzino, “Introduction to Biomedical Engineering,” Academic Press, 2000.
[36]S. Mehier-Humbert, F. Yan, P. Frinking, M. Schneider, R. H. Guy and T. Bettinger, “Ultrasound-mediated gene delivery: influence of contrast agent on transfection,” Bioconjuq Chem., vol. 18, no. 3, 2007, pp. 652-662.
[37]“陶瓷技術手冊”,經濟部技術處發行,中華民國產業科技發展協進會與中華民國粉末冶金協會出版,1994
[38]周卓明,壓電力學,全華科技圖書股份有限公司,2004,台北,台灣
[39]O. V. Abramov, Ultrasound in Liquid and Solid Metals, CRC Press, 1994.
[40]楊昇學,“單一穴蝕氣泡產生與破裂行為之試驗研究”,博士論文,國立交通大學土木研究所,2009
[41]岳曉明,聲化學及其發展,惠州學院報自然科學版,2002
[42]Yoshiaki Taniyama , Katsuro Tachibana , Kazuya Hiraoka , Tsunetatsu Namba , Keita Yamasaki , Naotaka Hashiya , Motokuni Aoki , Toshio Ogihara , Kaneda Yasufumi and Ryuichi Morishita ,“Local Delivery of Plasmid DNA Into Rat Carotid Artery Using Ultrasound”, Circulation; 105; pp. 1233-1239; 2002
[43]D.A.B. Smith, T.M. Porter, “Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound,” Ultrasound in Med. & Biol., vol. 33, no. 5, 2007, pp. 797–809.
[44]L. Hoff, “Acoustic properties of ultrasonic contrast agents,” Ultrasonics, vol. 34, 1996, pp. 591-593.
[45]Eric Herbert,Sebastien Balibar,and Frederic Caupin ,“Cavitation pressure in water”,PHYSICAL REVIEW E74,041603,2006
[46]馬大猷,現代聲學理論基礎,科學出版社,2004,北京
[47]賴俊延,“超音波穴蝕效應於基因傳遞效率之研究”,碩士論文,國立台灣大學電機工程學研究所,台北,2005。
[48]Ah Young Kim, Byung Ihn Choi, Tae Kyoung Kim, Kyoung Won Kim, Jae Young Lee and Joon Koo Han, “Comparison of contrast-enhanced fundamental imaging, second-harmonic imaging, and pulse-inversion harmonic imaging,” Investigative Radiology, Vol. 36, No 10, pp. 582-588, 73 ,2001.
[49]Unger EC et al., “Gene delivery using ultrasound contrast agents,” Echocardiography, Vol. 18, pp. 355-361, 2001.
[50]張政智,“應用於基因傳遞實驗之微氣泡製備與研究”,碩士論文,國立臺北科技大學機電整合研究所,台北,2008。
[51]白啟宏,“靜磁場與超音波微氣泡轉染對於基因傳遞影響研究”,碩士論文,國立臺北科技大學機電整合所,台北,2009。
[52]Artison Corporation Website:http://www.artisonweb.com/index.htm.
[53]李發琪,“第六章 超聲空化”,課堂講議,重慶醫科大學生物醫學工程系超聲工程研究所。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊