跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉昱宏
研究生(外文):Yu-Hong Liu
論文名稱:無線電力驅動感測器網路研製
論文名稱(外文):Design and Implementation of Wireless Powered Sensor Networks
指導教授:林啟瑞林啟瑞引用關係
指導教授(外文):Chii-Ruey Lin
口試委員:呂志誠林宏裕李達生
口試委員(外文):Chih-Cheng LuHong-Yu LinDa-Sheng Lee
口試日期:2012-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:108
中文關鍵詞:無線電力傳輸無線射頻識別電磁共振回波耦合無線功率傳輸無線感測器網路舒適度量測非接觸技術
外文關鍵詞:Wireless Power Transfer(WPT)Radio Frequency Identification system(RFID)Electromagnetic ResonanceBackscatter CouplingWireless Power TransmittionWireless Sensor Networks(WSNs)Thermal comfortPMVContactless Technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來無線通訊技術的發展,省略了訊號線的配置,使感測器網路更易於安裝和應用,然而,感測器網路節點上電力的需求,無論是使用電力配線或者以電池供應電力,仍然妨礙了感測網路的分佈,降低其應用性。本研究提出一項以無線電力驅動感測器網路之技術,搭配使用標準之無線射頻識別讀取器,在符合FCC規範條件下,以902~928 MHz超高頻電磁波作為電力傳輸媒介,透過電磁波共振技術達成高效率之無線電力傳輸,以提供電力給遠端感測網路節點,達成無線資料傳輸與無線電力傳遞之操作,發展一易於分散配置之感測器網路。研究中包括開發:無線電力傳輸模組 與 無線感測器節點模組,其中感測器節點模組上為能精確量測相關物理量除整合IC封裝之溫度感測器、照度感測器與相對濕度感測器,更配置本實驗室利用微機電技術開發之微結構風速感測器,以用於空間中之物理量監測蒐集乃至於舒適度指標之推估計算。其檢測精度、線性度與動態範圍,分別與實驗室等級量測儀器測量比對,均能符合工業用所需;為作進一步的確效與驗證,最終將所開發之無線電力驅動感測器網路應用於室內環境的舒適度量測,並驗證其適用於舒適度指標推估之用。總結相關實驗結果,發現電磁波發射源使用線極化天線時,無線電力最大有效傳輸範圍可達約3.5公尺;利用感測器網路與實驗室等級量測儀器測量空間中定點PMV值,其相差在±5%內,尤其風速感測器只有0.01 m/s以下之差距,證實感測器網路配置之IC型感測器與自行開發之微機電型風速感測器均有良好精度,以無線電力驅動無線感測器配置之感測器足以有效用於空間中相關資訊之蒐集;另一實驗則以本研究之無線電力驅動感測器網路量測舒適度,並與室內人員舒適度投票值CSV相比較,信賴水準達93.3%,互相關值約在3%內,此一實驗結果顯示了無線電力驅動感測器網路能夠有效收集室內舒適度指標,與人體感受趨於一致,並可由此建議,作為環境監控用之節電回路規劃參考,更可望在未來配合控制器的研發,實現以節能為主的無線控制網路操作,用於工業與民生各項控制,達成智慧型舒適感測調整乃至於節約省能之目標。

Recent technological advances in wireless communications have been enabled to easily install and apply sensor networks. Today such networks are used in many industrial and consumer applications, such as industrial process monitoring and control, machine health monitoring, and so on. However, the sensor node’s power supply which rely power line or battery will obstruct the sensing system distribution and applications. In this paper, the feasibility of wireless power transfer is investigated. The construction is based on the reference design of the wireless identification and sensing platform (WISP) from Intel. The wireless power transmission system works with a standard UHF RFID reader, using the electromagnetic wave (EM wave) with the central frequency between 902 to 928 MHz - the allowed ISM band at FCC. The electric power is transferred to remote sensor nodes by Electromagnetic Resonance and a matched resonant antenna. The technique will be able to supply enough power to drive remote sensor nodes and the low-power circuits. The sensor networks which powered by the wireless power transfer will be constructed to achieve wireless power transmissions and wireless data communications, as well as be more easily to distribution. The study includes design and implement wireless power transfer module and sensor node module. After checking precision and effective working range, we find they are suitable for industrial use. In order to get the more detailed test and verify, I use a demo case to do thermal comfort measurements with using the wireless powered sensor networks(WPSN). The thermal comfort measurements are influenced by thermal, humidity and flow. To get the measurements are more accurate, the sensing node module integrates an IC-based temperature sensor, the radiation thermometer, the relative humidity sensor, a MEMS flow sensor and the PIC16F690 microprocessor for predicted mean vote (PMV) calculation. The 433 MHz band RF module was employed for the wireless data communication with the specific protocol based on the Modbus communications protocol.
Moreover, in the wireless power transfer the efficiency is the more significant parameter. The study also focuses on the efficiency of remote charging and the effective distance. In this paper, the wireless power transmission system has been proved to achieve 70% power conversion efficiency and it collects the power by setting the distance at 3.5m. Although we expect that the effective distance with wireless power transfer could have reached to fifteen meters, yet the electric power has to be limited in accordance with the legal emission power from the RFID reader, which is ask by National Communication Council. With experimental results prove that this technique is quite suitable for low input power transmission. Finally, the outcomes of the evaluation inspire us to utilize the technique in a demo case of the thermal comfort measurements. The wireless powered sensor networks are able to gather the indoor comfort sensing index in good agreement with the comfort sensing vote (CSV) of a human being and the experimental results within the environment suggest that the sensing system can be used in air conditioning system to realize the comfort-optimal control strategy.

摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 2
1.3 研究目的與內容 3
1.4 文獻回顧 4
1.4.1 無線感測器網路 4
1.4.2 無線電力傳輸技術 10
1.4.3 舒適度指標PMV 14
1.4.4 舒適度指標與室內節能控制 17
1.5 論文架構 18
第二章 無線電力驅動感測器網路 19
2.1 無線電力傳輸模組 20
2.1.1 無線電力傳輸之技術理論 20
2.1.2 半波長偶極天線原理 26
2.1.3 半波長偶極天線參數特性分析 29
2.1.4 915MHz半波長偶極天線設計與實現 32
2.1.5 無線電力傳輸模組設計與實現 39
2.1.6 無線電力傳輸系統配置與量測機制 41
2.2 無線電力驅動感測器節點 45
2.2.1 溫濕度感測器 46
2.2.2 照度感測器 48
2.2.3 微結構風速感測器 48
2.3 微控制器 50
2.4 無線傳輸模組 51
2.4.1 無線通訊編碼 53
2.4.2 Modbus通訊協定 54
2.5 PMV計算法 55
2.6 儲能元件 57
2.7 人機控制介面HMI 59
第三章 量測設備與實驗設計 60
3.1 無線電力傳輸效能驗測 61
3.1.1 實驗架構 61
3.1.2 實驗儀器說明 63
3.2 感測器節點效能量測 65
3.2.1 無線電力傳輸距離與感測器反應時間之實驗設計 65
3.2.2 感測器精度測試之實驗設計 65
3.2.3 室內舒適度指標計算分析之實驗設計 67
3.2.4 實驗對照用量測儀器 68
3.3 無線傳輸品質量測 69
3.3.1 實驗架構 69
3.4 情境應用:電腦教室舒適度之主客觀量測探討 71
3.4.1 實驗設計 71
第四章 實驗結果與討論 73
4.1 無線電力傳輸效能量測結果 74
4.1.1 無線電力傳輸模組之效率量測結果 74
4.1.2 無線電力傳輸之有效距離量測結果 76
4.2 感測節點精確測試量測結果 80
4.3 無線傳輸品質驗證結果 86
4.4 情境應用:電腦教室舒適度之主客觀量測探討 89
第五章 結論與未來展望 93
5.1 結論 95
5.2 未來展望 97
參考文獻 99
符號彙編 106
中英文對照索引 108


[1]D. Culler, D. Estrin, and M. Srivastava, “Guest editors'' introduction: overview of sensor networks,” IEEE Computer, vol. 37, issue 8, Aug. 2004, pp. 41- 49.
[2]DIGITIMES電子時報,智慧城市暨數位生活論壇,台北,2011。 http://www.uns.org.tw/
[3]潘貞君、林致廷、吳文中、郭茂坤,「無線感測器網路平台及應用」,科學發展,第447期,2010。
[4]Technology Review, http://www.technologyreview.com
[5]Peter Harrop and Raghu Das, “Wireless Sensor Networks 2009-2019,” IDTechEx, 2009.
[6]I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor Networks,” IEEE Communications Magazine, vol. 40, no. 8, 2002, pp. 102-114.
[7]Smart Dust Project, http://robotics.eecs.berkeley.edu/~pister/SmartDust/
[8]D. Puccinelli and M. Haenggi, “Wireless sensor networks: applications and challenges of ubiquitous sensing,” Proc. of IEEE Circuits and Systems Magazine(CSM), vol. 3, no. 3, 2005, pp. 19-29.
[9]IEEE Standards 802.15.4TM, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs).” IEEE, New York, 2003.
[10]N. Wang, N. Zhang and M. Wang, “Wireless sensors in agriculture and food industry-Recent development and future perspective,” Computers and Electronics in Agriculture, vol.50, 2006, pp.1-14.
[11]W. L. Tse and W. L. Chan, “Real-time measurement of thermal comfort, Measurement (2006),” doi:10.1016/j.measurement., 2006.
[12]Jon T. Adams, “An Introduction to IEEE STD 802.15.4,” Freescale Semiconductor, Inc., USA, 2006.
[13]S. C Lo and Y. M Chang, “An Efficient Data Search and Replication Strategy in Wireless Sensor Networks”, MA. Thesis, Department of Computer Science and Information Engineering, National Dong-Hwa University, 2006.
[14]I. Demirkol, C. Ersoy and F. Alagoz, “MAC protocols for wireless sensor networks: a survey”, IEEE Communications Magazine , April 2006, Vol. 44, No. 4.
[15]Yunbo Wang, Mehmet C. Vuran and Steve Goddard, “Stochastic Analysis of Energy Consumption in WSNs,” Thesis, Department of Computer Science and Engineering University of Nebraska-Lincoln, 2010.
[16]Sami Halawani and Abdul Waheed Khan, “Sensors Lifetime Enhancement Techniques in Wireless Sensor Networks - A Survey,” Journal of Computing, vol 2, Issue 5, MAY 2010, ISSN 2151-9617.
[17]Jing X, Polastre J, and Culler D, “Perpetual environmentally powered sensor networks,” International Symposium on Information Processing in Sensor Networks, IPSN 2005, [S.l.]:[s.n.], 2005.
[18]Meninger S, Jo M, Amirtharajah R, et al., “MIT vibration-to-electric energy conversion[J].” IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 2001, 9(l):64-76.
[19]Want R, Res I and Santa Clara C A., “An introduction to RFID technology[J].,” IEEE Pervaive Computing, 2006, 5(l):25-33.
[20]Peter Harrop and Raghu Das, “Energy Harvesting and Storage for Electronic Devices 2010-2020,” IDTechEx, October 2010.
[21]D.S. Lee, “Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network,” Sensors, vol.8, no.12, 2008, pp. 7690-7714.
[22]蔣曜全,光驅動無線感測器網路應用於舒適度量測,碩士論文,國立臺北科技大學能源與冷凍空調工程碩士班,台北,2007。
[23]John M. Miller, Matthew B. Scudiere, John W. McKeever and Cliff White, “Wireless Power Transfer,” Oak Ridge National Laboratory''s Power Electronics Symposium Friday, July 22.
[24]P. E.Glaser, “An overview of the solarpower satellite option,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 60, pp.1230-1238, Jun. 1992.
[25]A. Douyere, J. D. S. L. Lan, A. Celeste and F. Alicalapa, “Broadband modelling of a high efficiency rectenna for batteryless RFID systems,” in IEEE Int. conf. Electronics, Circuits and Systems (ICECS2006), Nice, France, Dec. 2006, pp. 672-675.
[26]Y. S. Na, J. S. Kim, Y. C. Kang, S. G. Byeon and K. H. Rha, “Design of a 2.45 GHz passive transponder using printed dipole rectenna for RFID application,” in IEEE Region 10 Conf.(TENCON2004), Thailand, Nov. 2004, pp. 547-549.
[27]C. Walsh, S. Rondineau, M. Jankovic, G. Zhao and Z. Popovic, “A conformal 10 GHz rectenna for wireless powering of piezoelectric sensor electronics,” in IEEE MTT-S Int. Microw. Symp. Dig., USA, Jun. 2005, pp. 143-146.
[28]J. O. McSpadden and K. Chang, “Passive 5.8-GHz radio-frequency identification tag for monitoring oil drill pipe,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 356-363, Feb. 2003.
[29]鄭智元,無線能量傳輸系統於低溫共燒陶瓷之設計與封裝,碩士論文,台灣大學,台北,2003。
[30]T. C. Yo, C. M. Lee, C. H. Luo, C. H. Tu and Y. Z. Juang, “Stacked implantable rectenna for wireless powering the medical implants,” in Proc. IEEE AP-S Int. Symp. Dig., Honolulu, Hawaii, Jun. 2007, pp. 3189-3192.
[31]P. Li and R. Bashirullah, “A wireless power interface for rechargeable battery operated medical implants,” IEEE Trans. Circuits and Systems II, vol. 54, no. 10, pp. 912-916, Oct. 2007.
[32]尤宗旗,生醫微波無線充電系統,碩士論文,成功大學,台南,2003。
[33]R. Carta, J. Thone and R. Puers, “Awirelesspowersupplysystem for robotic capsular endoscopes,” Sensors and Actuators A: Physical, vol. 162, Issue 2, August 2010, pp. 177–183.
[34]R. C. Johnson, “MIT claims advance in wireless power transfer,” EE TIMES, 2006.
[35]K. M. Cheung, “MIT Makes Breakthrough in Wireless Electricity,”
http://www.digitalcamerainfo.com/content/MIT-Makes-Breakthrough-in-WiTricity-13608.htm
[36]Geoffrey A. Landis, “Reinventing the Solar Power Satellite,” Glenn Research Center, Cleveland, Ohio, NASA/TM—2004-212743, Feb. 2004.
[37]Ashraf Bin Islam, “Design of Wireless Power Transfer and Data Telemetry System for Biomedical Applications,” University of Tennessee – Knoxville, Dec. 2011.
[38]白明俠,黃昭,無線電力傳輸的歷史發展及應用,湘南學院學報,中國,2010,31,(5):51-53.
[39]Fujitsu Laboratories Ltd., “Fujitsu Develops Technology for Design of Compact, High-Efficiency Wireless Charging Systems. Paves way for simultaneous wireless charging of multiple portable devices,” Kawasaki, Japan, September 13, 2010.
http://www.fujitsu.com/global/news/pr/archives/month/2010/20100913-02.html
[40]P. Johnson, “WiTricity - Wireless Electricity”
http://www.buzzle.com/articles/witricity-wireless-electricity.html
[41]C. W. T. McLyman, 1932, “Transformer and inductor design handbook,” New York : Marcel Dekke
[42]P. O. Fanger, “Thermal comfort,” New York: McGraw-Hill, 1972.
[43]International Standard, ISO 7730, “Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria,” ISO 7730:2005(E).
[44]ANSI/ASHRAE Standard 55-2004, “Thermal Environmental Conditions for Human Occupancy,” American Society of Heating, Refrigerating and AirConditioning Engineers, Inc., 2003, ISSN 1041-2336.
[45]N. Fergus, “Survey of thermal comfort in Pakistan: Towards new indoor air temperature standards,” Oxford Brookes University, Oxford , 1994.
[46]F. Yamada, K. Yonezawa, S. Sugawara and N. Nishimura, “Development of Air-conditioning Control Algorithm for Building Energy Saving,” Proceedings of the IEEE International Conference in Control Applications, Kohala Coast-Island of Hawaii, USA, August 22-27, 1999, pp. 1579-1584.
[47]K. H. Yang and C. H. Su, “An approach to building energy savings using the PMV index,” Building and Environment,vol. 32(1), 1997, pp.25-30.
[48]W.S. Jang and W.M. Healy, “Wireless sensor network performance metrics for building applications,” Energy and Buildings, vol.42, no.6, 2010, pp. 862-868.
[49]D. Kolokotsa, G. Saridakis, A. Pouliezos and G. S. Stavrakakis, “Design and installation of an advanced EIB™ fuzzy indoor comfort controller using Matlab™,” Energy and Buildings, vol.38, 2006, pp.1084-1092.
[50]W. C. Brown, “Experiments involving a microwave beam to power and position a helicopter,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-5, no. 5, pp. 692-702, Sept. 1969.
[51]W.C. Brown, J.R. Mims, and N.I. Heenan, “An experimental microwave-powered helicopter,” IEEE Conv. Rec., vol. 13, pt. 5, pp. 225-235, 1965.
[52]W.C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microwave Theory Tech., vol. 32, no. 9, pp. 1230-1242, Sept. 1984.
[53]Jari Pascal Curty、Michel Declercq、Catherine Dehollain、Norbert Joehl著,陳力穎、毛陸虹編譯,「無源超高頻RFID系統設計與優化」,科學出版社,北京,2008。
[54]Matthew Loy、Iboun Sylla,「ISM頻帶與短距裝置天線基本原理」,德州儀器訓練資料,台北,2008。
[55]C. A. Balanis, “Antenna Theory Analysis And Design,” New York, John Wiley & Sons, 1997.
[56]Shun-Sheng Hsu and Huey-Ru Chuang, “Research on 60-GHz CMOS RFIC-On-Chip Antennas and 915-MHz Printed Antenna on the Flexible Substrate Proximate to the Human Body,” MA. Thesis, NCKU, 2007.
[57]李明洋、劉敏、楊放,「HFSS天線設計」,電子工業出版社,中國,2011。(ISBN 978-7-121-14033-4)
[58]HSMS-28X C/Y Zero Bias Schottky Detector Diodes (In Surface Mount SOD-523 Package) Data Sheet, Avago Technologies.
www.avagotech.com
[59]J. O. McSpadden, L. Fan and K. Chang, “A high conversion efficiency 5.8-GHz rectenna,” IEEE MTT-S Int. Microw. Symp. Dig., Denver, CO, Jun. 1997, pp. 547-550.
[60]T. W. Yoo and K. Chang, “Theoretical and experimental development of 10 and 35 GHz rectennas,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 6, pp. 1259-1266, Jun. 1992.
[61]J. Zbitou, M. Latrach and S. Toutain, “Hybrid rectenna and monolithic integrated zero-bias microwave rectifier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 147-152, Jan. 2006.
[62]M. Furukawa, et al., “5.8-GHz planar hybrid rectenna for wireless powered applications,” in Proc. Asia-Pacif ic Microwave Conf.(APMC2006), Yokohama, Japan, Dec. 2006, pp. 1611-1614.
[63]Jwo-Shiun Sun, Ren-Hao Chen, Shao-Kai Liu and Cheng-Fu Yang, “WIRELESS POWER TRANSMISSION WITH CIRCULARLY POLARIZED RECTENNA,” MA. Thesis, NTUT, Taiwan, 2009.
[64]SENSIRION AG
http://www.sensirion.com/en/pdf/Datasheet_SHT1x_SHT7x.pdf
[65]L. C. Chang, Y. W. Deng, D. S. Lee and C. S. Chen, “Development of a high resolution CMOS flow sensor,” 1st IEEE-NEMS Conference, Zhuhai China, 2006, pp.125.
[66]鄧雅薇,高解析度之新型CMOS流速感測器之開發與研究,碩士論文,國立台灣大學機械工程研究所,台北,2004。
[67]PIC16F685/687/689/690 DataSheet, 20-Pin Flash-Based, 8-Bit, CMOS Microcontrollers with nanoWatt Technology, MICROCHIP Technology Inc., 2005.
[68]CC1101 DataSheet, Low-Power Sub-1 GHz RF Transceiver, TEXAS INSTRUMENTS, 2012.
www.TI.com
[69]Modicon Modbus Protocol Reference Guide.
http://www.modbus.org/
[70]MODBUS over serial line specification and implementation guide V1.02, Modbus.org.
http://www.modbus.org/
[71]MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b.
http://www.Modbus-IDA.org
[72]J. Kang and S. Park, “Integrated comfort sensing system on indoor climate,” Sensors and Actuators A, 2000, pp.302-307.
[73]呂學隆,超級電容器EDLC產業發展現況(上)(下):產品與應用市場,IEK產業情報網,2011。
[74]M. Mufti, S. A. Lone, S. J. Iqbal, M. Ahmad and M. Ismail, “Super-capacitor based energy storage system for improved load frequency control” Journal of Electric Power Systems Research, Vol. 79, No. 1, pp. 226-233, January 2009.
[75]Mui KW and Chan WT, “Adaptive comfort temperature model of air-conditioned building in Hong Kong,” Building and Environment 2003; 38:837-852.
[76]Nicol F and Roaf S., “Post-occupancy evaluation and field studies of thermal comfort,” Building Research & Information 2005; 33(4): 338-346.
[77]M.R. Kulkarni and F. Hong, “Building and Environment,” vol.39, 2004, pp.31-38.
[78]Ashraf Bin Islam, “Design of Wireless Power Transfer and Data Telemetry System for Biomedical Applications”, University of Tennessee – Knoxville, Dec. 2011.
[79]N. Wang, N. Zhang and M. Wang, “Wireless sensors in agriculture and food industry-Recent development and future perspective,” Computers and Electronics in Agriculture, vol.50, 2006, pp.1-14.
[80]Y. Liu and R. Jantti, “A Study Towards Enhanced Reliability Performance of Remote Control and Monitoring Application Over Commercial Wireless Communication Networks,” in Wireless Communications, Networking and Mobile Computing, 2006.(WiCOM 2006), Sep. 2006, pp.1-4.
[81]CNS 15537,國家標準之室內環境熱舒適度量測法,A3433, 2012。
[82]IEEE Standard for “Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs),” IEEE Std 802.15.4-2006.
[83]Yen Kheng Tan and Sanjib Kumar Panda, “Review of Energy Harvesting Technologies for Sustainable Wireless Sensor Network,” National University of Singapore, Singapore, 2009.
[84]居住空間舒適性檢測標準整合與開發計畫,財團法人工業技術研究院量測技術發展中心,98-1403-04-0304,2010。
[85]劉永軍,無線電力傳輸技術:創造未來空間神話,中國電子商情(基礎電子),中國,2008,11:70-75
[86]Hoang Duc Chinh and Yen Kheng Tan, Publisher : “InTech, Published: December 14, 2010 under CC BY-NC-SA 3.0 license,” in subject Electrical and Electronic Engineering, ISBN 978-953-307-261-6.
[87]林振豐,電磁波遮蔽材料及吸收材料頻率特性之探討,碩士論文,國立臺北科技大學機電整合研究所,台北,2007。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊