跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙方毓
研究生(外文):Fang-Yu Jhao
論文名稱:CMOS覆晶式微磁通閘磁量計之設計與製程研究
論文名稱(外文):A Study on the Design and Process of CMOS Flip-Chip Micro Fluxgate Magnetometers
指導教授:呂志誠
指導教授(外文):Chih-Cheng Lu
口試委員:魏大華王立民鄭振宗
口試委員(外文):Da-Hua WeiLi-Min WangJen-Tzong Jeng
口試日期:2012-07-04
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:磁通閘磁場感測器CMOS覆晶技術無電鍍微錫濺鍍Maxwell電磁模擬
外文關鍵詞:micro fluxgatemagnetic sensorCMOSFlip-chipMaxwellElectrolessmicro ballsputtering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文設計製作了運用CMOS製程、無電鍍及覆晶技術之雙磁芯微磁通閘感測器及感測器之磁芯磁通量及磁通密度模擬,我們透過螺線管形狀激發線圈之設計來得到更強的激發磁場來使磁芯更容易飽和。概念設計方面,微磁通閘晶片整體面積為2.5 mm×2.5 mm,包含磁芯、上下層平面感應線圈、下層激發線圈(CMOS製程的金屬鋁)、上層激發圈(CMOS製程的金屬鋁)。利用Ansoft Maxwell電磁模擬軟體分析磁芯之磁通量模擬中,可以發現磁芯愈細其磁通密度越大,但在磁通量方面則是磁芯越寬,其磁通量越大,在此模擬中可以用來判別爾後磁通閘之磁芯選擇,於磁通閘製程方面,我們使用了三種製程方式,其第一種為使用無電解電鍍銅之方式;第二種為使用微錫球將錫球植入PAD上來達成覆晶之概念;第三種方式為使用濺鍍之方式將銀鍍至PAD上並運用第二種之方法來完成,經由我們實驗發現,其晶片之設計上發生錯誤,導致我們運用晶片銲線技術將其訊號點拉出至PCB板上時無法拉出,且探究其第一種之製程方式於我們之微小晶片上為不可行之製程;第二種製程方式雖成功將其覆晶之概念完成,但完成後其內部無法導通;第三種之製程方式驗證了於鋁材上濺鍍銀可順利將上下層結構做導通,但其實驗結果於感應線圈部分有導通,於激發線圈部分則是沒有導通,其實驗結果將可供後續覆晶式微磁通閘之製作方面提供一參考價值。

This paper presents a dual-core (Förster-type) micro-fluxgate magnetic field sensor fabricated on a silicon chip based on CMOS technology, electroless plating and flip-chip technology. The silicon chip is 2.5 mm × 2.5 mm in dimension. The sensor consists of magnetic cores, planar pick-up coils, bottom excitation coils (CMOS Al interconnections) and upper excitation coils (wire-bonding Al wires). By using Ansoft Maxwell to simulate the magnetic flux (Φ), it is found that by using a smaller core width it is able to obtain a higher magnetic flux density (B) at the expense of a reduced total magnetic flux (Φ). The simulation result helps optimizing the core size of microfluxgate in the future designs. In addition to the wire-bonded microfluxgate, we make use of the micro solder balls method to realize the flip-chip microfluxgate. Before collocating micro solder balls on to the pads, we tried two methods to improve the electrical contact between solder balls and pads. The first method is electroless plating of copper films, and the second one is sputtering deposition of silver films on the pads. Through experiments, it was found that the excitation circuit tends to open for both methods. The electroless-plated copper rapidly becomes insulating copper oxide on the surface, making it difficult to bond the solder balls. By using the silver coating process can successfully connect most of the pads of upper and lower chips. The experiment showed that the sensing coils in the upper and lower chips are successfully connected in series via solder balls, but the multi-turn excitation coil of the flip-chip sensor is an open circuit. Further works on improving the yield and efficiency of solder ball plating and wafer-to-wafer bonding with solder balls will be valuable for realization of the practical flip-chip microfluxgate.

摘 要......................................................i
ABSTRACT...................................................ii
誌 謝......................................................iv
目錄........................................................v
表目錄....................................................vii
圖目錄...................................................viii
第一章 緒論................................................1
1.1 研究背景................................................1
1.2 文獻回顧................................................2
1.3 覆晶封裝簡介............................................7
1.4 研究動機與目的.........................................10
1.5 論文架構...............................................11
第二章 實驗原理...........................................12
2.1 磁通閘原理.............................................12
2.1.1 電磁感應原理.........................................12
2.1.2 磁透合金.............................................12
2.1.3 磁滯曲線.............................................15
2.1.4 磁通閘之感測原理.....................................16
2.2 無電解電鍍原理.........................................19
2.2.1 無電解電鍍銅鍍浴之組成...............................19
2.2.2 無電解電鍍銅之化學反應式.............................21
2.3 濺鍍原理...............................................22
第三章 實驗方法與步驟.....................................24
3.1 磁通閘設計.............................................24
3.1.1 磁通閘晶片設計流程...................................24
3.1.2 磁通閘晶片設計.......................................26
3.2 磁通閘之磁芯模擬.......................................32
3.2.1 覆晶式磁通閘模擬流程.................................32
3.2.2 覆晶式微磁通閘模型之建立.............................33
3.2.3 微磁通閘磁芯之磁通密度模擬(直流穩態).................34
3.3 微磁通閘晶片後製程製作.................................36
3.3.1 磁芯材料性質及選擇與製作.............................36
3.3.2 覆晶式磁通閘後製程...................................38
3.3.3 無電解電鍍後製程.....................................40
3.3.4 微錫球法與實驗設備...................................43
3.3.5 對準接合.............................................44
3.3.6 濺鍍-錫球法..........................................45
第四章 實驗結果與討論.....................................47
4.1微磁通閘磁芯之模擬結果..................................47
4.2無電鍍銅製程之結果......................................55
4.2.1 無電解電鍍銅於晶片...................................55
4.2.2 無電解電鍍銅於不同尺寸面積之驗證.....................57
4.2.3 無電解電鍍銅之鍍液於鋁基板之驗證.....................59
4.3 微錫球法結果...........................................60
4.4 濺鍍-錫球法之實驗結果..................................63
4.5 磁場-電壓轉移率........................................64
4.5.1 量測裝置.............................................64
4.5.2 固定激發頻率不同激發振幅.............................65
第五章 結論...............................................68
5.1 結論...................................................68
5.2 未來展望...............................................70
參考文獻...................................................71
附錄.......................................................76


[1]F Primdahl, "The fluxgate magnetometer," J. Phys. E:Sci. Instrum., vol. 12, 1979, pp. 241-253.
[2]Trifon M. Liakopoulos, Chong H. Ahn, " A micro-fluxgate magnetic sensor using micromachined planar solenoid coils," Sensors and Actuators A: Physical, Volume 77, Issue 1, Pages 66-72, 28 September 1999.
[3]James Lenz and Alan S. Edelstein, " Magnetic Sensors and Their Applications," IEEE Sensors Journal, Volume 6, Number 3, Pages 631-649, June 2006.
[4]鄭振宗,呂志誠,通量閘磁強計之原理與應用,臺灣磁性技術協會會訊,第51期,第9-16頁,2010年。
[5]R. Gottfried-Gottfried, W. Budde, R. Jahne, H. Kuck, B. Sauer, S. Ulbricht, U. Wende, "A miniaturized magnetic-field sensor system consisting of a planar fluxgate sensor and CMOS readout circuitry," Sensors and Actuators A, vol. 54, 1996, pp. 443-447.
[6]D. I. Gordon and R. E.Brown,“Recentadvances in fluxgate magnetometry,”IEEE Trans. Magn. 8, 76-92 (1972).
[7]http://nssdc.gsfc.nasa.gov/nmc/experimentDisplay.do?id=1959-004A-08
[8]Langel R, Ousley G, Berbert J, Murphy J, and Settle M. "The MAGSAT Mission" GEOPHYSICAL RESEARCH LETTERS, VOL. 9, NO. 4, PAGES 243–245, 1982
[9]Frank Collar, Peter Fenning and Carlos Mora, “Application of drill hole vector magnetic measurements to resolve the position of existing underground structures,” NDT&E International, vol. 38, 2005, pp. 231–236.
[10]S. Kumar et al, “Real-Time Tracking Magnetic Gradiometer for Underwater Mine Detection,” IEEE Quantum Magnetics , 2004, pp. 874-878.
[11]A. Sarris, E. Athanassopoulou, A. Doulgeri-Intzessiloglou, Eu. Skafida AND J. Weymouth, “Geophysical Prospection Survey of an Ancient Amphorae Workshop at Tsoukalia, Alonnisos (Greece),” Archaeol. Prospect, vol. 9, 2002, pp.183–195.
[12]Jose’Chilo, Abbas Jabor, Ludwik Lizska, A˚ ge J. Eide, Thomas Lindblad, “Obtaining “images” from iron objects using a 3-axis fluxgate magnetometer,” Nuclear Instruments and Methods in Physics Research A, vol. 580, 2007, pp. 1105–1109.
[13]Yong-Hui Cao, Xiu-Hua Shi, Hui Xu, “Application of Integrated Fluxgate Magnetic and GPS Navigation System in AUV,” Chinese journal of Sensors and Actuators, vol. 18 , no.2, 2005, pp.391-393.
[14]Junichi Shimada, T, Kazuhiro Itoh, Satoshi Yamaguchi, Atsushi Nishikawa, Fumio Miyazaki, “Magnetic navigation system for surgery of the pig lung partial resection with thoracoscopic transbronchial marking,” International Congress Series, vol. 1281, 2005, pp. 752–755.
[15]E. Delevoye, M. Audoin, M. Beranger, R. Cuchet, R. Hida, T. Jager, " Microfluxgate sensors for high frequency and low power applications," Sensors and Actuators A: Physical, Volumes 145-146, Pages 271-277, July-August 2008.
[16]Shaobin Wu, Shi Chen, Jun Ouyang, Chao Zuo, Lei Yu, Xiaofei Yang, " Fabrication of MEMS-based Micro-fluxgate Sensor with Runway-shaped Co-based Amorphous Alloy Core, " J. Phys.: Conf. Ser. 263 012012, 2001.
[17]Koch, R. H.; Rozen, J. R., "Low-noise flux-gate magnetic-field sensors using ring- and rod-core geometries," Applied Physics Letters, Volume: 78, page(s): 1897 – 1899, 2001.
[18]P. Ripka, " New directions in fuxgate sensors, " Journal of Magnetism and Magnetic Materials, 215-216, 735-739, 2000.
[19]L. Chiesi, P. Kejik, B. Janossy, R.S. Popovic “CMOS planar 2D micro-fluxgate sensor,” Sensors and Actuators, VOL. 82, 2000, pp. 174–180.
[20]P. Ripka, S. Kawahito, S.O. Choi, A. Tipek and M. Ishida, " Micro-fluxgate sensor with closed core," Sensors and Actuators A: Physical, Volume 91, Issues 1-2, Pages 65-69, 5 June 2001.
[21]Maren Ramona Kirchhoff, Stephanus Büttgenbach," MEMS fluxgate magnetometer for parallel robot application," Microsystem Technologies, Volume 16, Number 5, May, 2010, Pages 787-790.
[22]Chong Lei, Ren Wang, Yong Zhou, Zhimin Zhou, " MEMS micro fluxgate sensors with mutual vertical excitation coils and detection coils," Microsystem Technologies, Volume 15, Number 7, Pages 969-972, July 2009.
[23]黃文聖,新型CMOS-MEMS微磁通閘設計與特性量測,碩士論文,國立臺北科技大學機電整合研究所,台北,2010。
[24]J. H. Lau, “Flip Chip Technology” (McGraw-Hill, New York, 1995).
[25]“Magnetic Materials Lect. 01”, by Jack W. Judy and Ira B. Goldberg , Electrical Engineering Department , University of California, Los Angeles.
[26]Du-Xing Chen,James A. Brug, Ronald B. Goldfarb, "Demagnetizating Factors for Cylinders", IEEE Transactions of Magnetics, 27, pp.3601-3619 .1991
[27]維基百科, 網址為http://en.wikipedia.org/wiki/Compass
[28]P. Ripka, "Advances in fluxgate sensors, " Sensors and Actuators A 106, 8–14, 2003.
[29]P. Ripka, "Review of fluxgate sensors," Sensors and Actuators A 33, 129-141, 1992.
[30]J. Deak, A.H. Miklich, J.Slonczewski, and R.H. Koch, “A low-noisesingle-domain fluxgate sensor,” Applied Physics Letters 69, 1157 .1996
[31]J. Shu, B. P. A. Grandjean, and S. Kaliaguine, “Effect of on Cu(OH)2Electroless Copper Plating”, Ind. Eng. Chem. Res., Vol. 36, pp. 1632.(1997)
[32]方景禮,電鍍添加劑總論(14),表面處理工業雜誌, 153 期, pp. 137.(1995)
[33]A. Hung and K. M. Chen, “Mechanism of Hypophosphite - reducedElectroless Copper Plating”, J. Electrochem. Soc., Vol. 136, pp. 72.(1989)
[34]J. E. A. van den Meerakker, “On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces”, J. Appl.Electrochem., Vol. 11, pp. 395. (1981)
[35]R. M. Lukes, Plating, Vol. 51, pp. 1066. (1964)
[36]V. V. Svirdow, “Electroless Metal Deposition Aqueous Solution”,Byelorussian University, Minsk, Russia. (1987)
[37]晉豐興業有限公司,網址為http://www.techbank.com.tw/c-tbc.htm
[38]李承勳,CMOS-MEMS磁通閘磁量計之驅動電路與晶片設計,碩士論文,國立臺北科技大學機電整合研究所,台北,2008。
[39]陳亭宏,CMOS-MEMS平面磁通閘磁量計之薄膜磁芯特性研究,碩士論文,國立臺北科技大學機電整合研究所,台北,2009。
[40]劉育廷,應用銲線與覆晶後製程之CMOS微磁通閘製作與特性分析,碩士論文,國立臺北科技大學機電整合研究所,台北,2011。
[41]Metglas®, Inc., 網址為http://www.metglas.com/.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top