跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施名陽
研究生(外文):Ming-Yang Shih
論文名稱:板狀股骨材料波傳之頻散行為量測及探討
論文名稱(外文):Measurement for dispersion behavior of lamellae of femoral
指導教授:楊哲化
指導教授(外文):Che-Hua Yang
口試委員:廖駿偉尹慶中蘇春熺
口試委員(外文):Jyun-Wei LiaoChing-Chung YinChun-Hsi Su
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:頻散關係雷射超音波橫向等向性材料遞迴勁度矩陣法
外文關鍵詞:DispersionLUTRASMTransverse Isotropic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於骨質疏鬆症的病患日亦漸增,雖然並不會直接導致死亡,但是它使得骨折機會增加,影響病患的健康和獨立生活能力,造成社會醫療重大的負擔。因此骨骼的機械性質的量測探討已成為各界關注的焦點之一。在世界各地致力於,通過不同的技術預測骨折的風險使得相關研究進而發展。
已有許多單位用不同方試探討皮質骨與海綿骨的機械性質,本研究目地為板狀股骨材料的材料參數量測以及探討加熱與未加熱對於板狀股骨材料的影響。同時,激發不同傳遞方向的導波,觀察其波傳方向對頻散關係的影響。研究中主要分為三個部分,包含雷射超音波技術的實驗量測與採用遞迴近似勁度矩陣法模擬板狀股骨材料的波傳行為,最後藉由量測與理論之結果相互比較,探討板狀股骨材料參數與頻散關係的影響。

The past few years Osteoporosis is more and more serious. Osteoporosis does not lead to death. But Osteoporosis will cause fractures of the opportunity to increase. Patient’s health and ability to live independently will be affected. It is caused a huge burden on social and medical. Therefore, measurement for the bone mechanical properties has become important issue.
This research is focused on measurement and modeling for the dispersion relations of Lamb wave propagating in lamellae of femoral. This investigation included simulations of theory, experiments on laser ultrasonic technique, and compare with different direction of guided wave on femoral. The theoretical model based on a recursive asymptotic stiffness matrix method (RASM) is used to provide numerical calculations. A hybrid laser-generation/laser-detection technique is used to measure the dispersion relations.
In this study, the theoretical modeling dispersion curves agree with the experimental measured dispersion, and successfully investigate the effects of lamellae of femoral on dispersion relation, including Poisson’s ratio, Young'' s Modulus.



目 錄

中文摘要..........................................i
英文摘要.........................................ii
致謝............................................iv
目錄.............................................v
圖目錄.........................................vii
第一章 緒 論.....................................1
1.1 前言....................................1
1.2 研究動機 ................................2
1.3 文獻回顧 ................................2
  1.3.1非等向性材料的波傳研究...............2
  1.3.2 骨頭實驗及量測.....................5
1.4 研究目的 ................................8
第二章 板狀股骨之頻散曲線建立......................10
2.1 理論頻散關系曲線建立流程..................11
2.2 理論基礎 ...............................12
  2.2.1 橫向等向性材料....................12
 2.2.2 蘭姆波導波理論....................14
  2.2.1 遞迴近似勁度矩陣法.................15
2.3 頻散關係的計算...........................17
  2.3.1 理論模型正向解....................18
2.3.1.1 灰階法.....................18
2.3.1.1 爬尋法.....................19
  2.3.2 反算技術 .......................20
第三章 實驗量測..................................22
3.1 試片準備 ...............................22
3.2 材料參數量測............................27
  3.2.1 厚度與密度量測....................27
  3.2.2 波速量測.........................28
3.3 實驗方法................................31
  3.3.1 雷射超音波技術....................31
  3.3.2 訊號激發原理......................31
  3.3.3 訊號接收原理......................33
  3.3.4 實驗架設.........................33
第四章 研究結果與討論.............................37
4.1 理論模型................................37
4.2 實驗量測................................48
4.3 理論與實驗比較...........................65
第五章 結 論....................................73
參考文獻.........................................74
符號彙編.........................................77


參考文獻

[1] 中華民國骨質疏鬆症協 會,“http://www.toa1997.org.tw/index.php”, 2012
[2] 財團法人台灣非破壞檢測協會,“http://www.sntct.org.tw/”, 2012
[3] 郭素菁,拒絕骨質疏鬆症-寫給每個女性的防治手冊,台北:方至出版社。
[4] R. D. Kriz and W. W. Stinchcomb, "Elastic Moduli of Transversely Isotropic Graphite Fibers and Their Composites," Experimental Mechanics, vol. 19, no. 2, 1981 , pp. 41-49.
[5] Y. C. Chu and S. I. Rokhlin, "Stability of determination of composite moduli from velocity data in planes of symmetry for weak and strong aniostropies," J. Acoust. Soc. Am., vol. 95, no. 1, 1994, pp. 213-225.
[6] P. B. Nagy, "Longitudinal guided wave propagation in a transversely isotropic rod immersed in fluid," J. Acoust. Soc. Am., vol.98, no. 2, 1995, pp. 213-225.
[7] Y. C. Chou and C. S. Chen, "Ultrasonic characterization of human cancellous bone using the Biot theory: Inverse problem," Int. J. Numer. Anal. Meth. Geomech., vol. 32, no. 1, 2008, pp. 219-234.
[8] J. Foiret, H. G. Minonzio, M. Talmat and P. Laugier, "Guide mode measurement on bone with realistic geometry," IEEE International Ultrasonics Symposium 2011.
[9] R. P. Dickenson, "The Mechanical Properties of Bone in Osteoporosis," The Journal of Bone and Joint Surgery, vol. 63-B, No. 2, 1981, pp. 233-238.
[10] J. M. Alves, J. T. Ryaby, J. J. Kaufman, F. P. Magee and R. S. Siffert, "Influence of marrow on ultrasonic velocity and attenuation in bovine trabecular bone," Calcified Tissue International, 1996, pp. 362-367.
[11] E. Camus, G. Berger and P. Laugier, "Cortical bone velocity mapping using leaky surface acoustic waves," IEEE Ultrasonic Symposium, 1998, pp. 1471-1474.
[12] P. K. Zysset, "Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur," Journal of Biomechanics, vol. 32, 1999, pp. 1005-1012.
[13] S. M. Ahmed, A. M. Abd-Alla, "Electromechanical wave propagation in a cylindrical poroelastic bone with cavity, " Applied Mathematics and Computation, vol. 33 , no. 1, 2002, pp. 287-286.
[14] N. Sebaa, "Ultrasonic characterization of human cancellous bone using the Biot theory: Inverse problem," J. Acoust. Soc. Am., vol. 120, no. 4, 2006, pp. 1816-1824.
[15] L. H. Le ,Y. J. Gu ,Y. Li ,C. Zhang , "Probing long bones with ultrasonic body waves, " Appl. Phys. Lett., vol. 96, 2010, pp. 114102-3.
[16] E. Hamed, E. Novitskaya, J. Li, P.-Y. Chen, I. Jasiuk, J. McKittrick, "Elastic moduli of untreated, demineralized and deproteinized cortical bone: Validation of a theoretical model of bone as an interpenetrating composite material, " E. Hamed et al. / Acta Biomaterialia , vol. 8, no. 1, 2012, pp. 1080-1092.
[17] 葉承鴻,以雷射超音波技術建立高溫材料性質量測平台及其應用,博士論文,台北科技大學,台北市,2009。
[18] 劉培生 譯,多孔固體結構與性能(第2板),清華大學出版社,北京,2003。
[19] 吳佳翰,壓電材料板在單面流體層負載下蘭姆波的波傳行為之頻散關係探討,碩士論文,長庚大學,桃園縣,2007。
[20] J. J. Liao and C. D. Wang, "Elastic solutions for a transversely isotropic half-space subjected to a point load," Int. J.Numer. Anal. Meth. Geomech., vol. 22, 1998, pp. 425-447.
[21] H. Lamb, "On the flexure of an elastic plate," Proc. London Math. Soc., vol. 21, no. 1, 1889, pp. 70-90.
[22] A. H. Fahmy and E. L. Adler , "Propagation of acoustic surface waves in multilayers: A matrix description," Applied Physics Letters, vol. 22, 1973, pp. 495-497.
[23] L. Wang and S. I. Rokhlin, "Recursive asymptotic stiffness matrix method for analysis of surface acoustic wave devices on layered piezoelectric media," Applied Physics Letters, vol. 81, 2002, pp. 4049-4051.
[24] Z. Wang and S. I. Rokhlin, "A compliance/stiffness matrix formulation of general Green’s function and effective permittivity for piezoelectric multilayers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, 2004, pp. 453-463.
[25] J. A. Nelder and R. Mead, "A simplex methid for function minimization," The Computer Journal, vol. 7, 1965, pp. 308-313.
[26] Q. Y. Duan, V. K. Gupta and S. Sorooshian, "Shuffled Complex Evolution Approach for Effective and Efficient Global Minimization," Journal of Optimization Theory and Application, vol. 76, no1. 3, 1993, pp. 501-521.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top