跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀良儒
研究生(外文):Liang-Ru Ji
論文名稱:結合矽鍺通道與矽鍺源/汲極之應變pMOSFETs特性分析與熱載子效應
論文名稱(外文):Characteristics and Hot-Carrier Effect of Strained pMOSFETs with SiGe Channel and SiGe Source/Drain Stressors
指導教授:黃恆盛黃恆盛引用關係陳雙源陳雙源引用關係
口試委員:劉傳璽王木俊
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:64
中文關鍵詞:應變矽嵌入式矽鍺源/汲極雙軸應變熱載子效應
外文關鍵詞:Strained-Siembedded SiGe Source/Drainbiaxial strainhot-carrier effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
嵌入式矽鍺源/汲極(Embedded SiGe S/D)應變技術,是將源汲極的矽蝕刻至一特定深度後,再重填矽鍺原子。它利用矽與鍺原子晶格不匹配,使矽通道產生一個壓縮應力,此壓縮力能使電洞的載子遷移率增加,進而使P型電晶體的性能提升。雖然已有文獻探討嵌入式矽鍺源/汲極對pMOSFETs的影響,但鮮少有文獻探討雙軸應變結合嵌入式矽鍺源/汲極應變技術的電晶體特性。所以本篇論文的重點在研究,雙軸應變結合嵌入式矽鍺源/汲極應變的電晶體,對於不同通道長度的pMOSFETs性能的影響,並且探討短通道中的熱載子效應。
經由本研究發現,當P型電晶體為長通道時,雙軸應變為主要提升載子遷移率的因素,這應是由於雙軸應變在長通道中產生較大的應力,但是當通道長度縮短時,雙軸應變提升載子遷移率的效果也隨著通道長度縮短跟著變小,這現象會降低電晶體性能提升的效果。不過嵌入式矽鍺源/汲極單軸應變,經本研究證實,可以在短通道中產生較大的壓應力,使載子遷移率能在短通道中增加。因此在電晶體尺寸不斷地微縮之下,利用嵌入式矽鍺源/汲極應變技術來提升電晶體性能是個不錯的選擇。
本研究也針對結合雙軸與嵌入式矽鍺源/汲極應變技術的pMOSFETs元件做熱載子可靠度的測試,計算介面狀態(interface state)的變化量。從實驗數據來看,嵌入式矽鍺源/汲極應變技術的pMOSFETs元件,在高溫的熱載子可靠度測試下,飽和電流劣化約5.5%,比傳統元件飽和電流4.8%的劣化更為嚴重,此劣化較嚴重的原因可能是因為重填SiGe時使介面產生大量的缺陷,導致較嚴重的劣化。因此若要使用雙軸與嵌入式矽鍺源/汲極應變技術的pMOSFETs元件需考慮性能較容易劣化的問題。


The embedded SiGe S/D stressor involves etching out the source/drain silicon and replacing it with SiGe. It uses the lattice mismatch between silicon and germanium atoms which makes the silicon channel generating compressive strain. The compressive stress enhances hole mobility, and the pMOSFETs performance can be enhanced.
Previous literatures have investigated the effects of pMOSFETs with embedded SiGe S/D stressor, but devices incorporated with biaxial strain and embedded SiGe S/D has not been clearly investigated. In this work, we research the characteristics of devices containing biaxial strain and embedded SiGe S/D stressor with different channel lengths and explores the channel hot carrier (CHC) in short channel pMOSFETs.
The experimental results show that the biaxial strain achieved higher carrier mobility in long channel. It is believed that the biaxial strain induced larger stress. However, the biaxial strain reduces its mobility enhancement effect when the channel length becomes short. In contrast, the experiment also shows that the embedded SiGe S/D stressor can enhance carrier mobility by increasing compressive stress in short channel. Therefore, the embedded SiGe S/D stressor is a good choice for enhancing drain current when the conventional MOSFETs step deeper into the nano-regime.
The reliability of channel hot carrier (CHC) for pMOSFETs with combination of biaxial and embedded SiGe S/D stressors is also investigated. The enhancement of interface states is also calculated. From our high temperature experimental results, saturation current of the embedded SiGe S/D pMOSFETs degraded 5.5%, which is more serious than Si-control devices’ 4.8% degradation. It is presumable that embedded SiGe S/D induces more traps in the interface. Therefore, using the combination of biaxial and embedded SiGe S/D strain devices, performance degradation problem should be considered carefully.


CONTENTS
ABSTRACT (Chinese) ----------------------------------------i
ABSTRACT (English)........................................ii
ACKNOWLEDGEMENTS..........................................iv
CONTENTS...................................................v
LIST OF TABLES...........................................vii
LIST OF FIGURES.........................................viii
Chapter 1 INTRODUCTION
1.1 Background.............................................1
1.2 Thesis Organization....................................2
Chapter 2 INTRODUCTION OF EMBEDDED SIGE S/D STRESSOR ON MOSFET
2.1 Introduction of Strained-Si............................3
2.1.1 Global Strained-Si Technology........................3
2.1.2 Local Strained-Si Technology.........................5
2.2 Theoretical Study of Mobility for Strained-Si..........8
2.2.1 The Factors of Mobility Enhancement..................8
2.2.2 Mobility calculation................................10
2.3 Research about Hot-Carrier Effect of Strained-Si Devices...................................................12
2.3.1 Hot-Carrier-Effect..................................12
2.3.2 HC mechanism .......................................14
2.3.3 Temperature Effect..................................16
2.3.4 Hot-carrier Degradation of Strained-Si Devices......19
2.4 Problem Formation.....................................22
Chapter 3 EXPERIMENTAL DESIGNS
3.1 Device Fabrication....................................23
3.2 Experimental Structures...............................24
3.3 Measurement Conditions and Stress Conditions..........25
Chapter 4 RESULTS AND DISCUSSION
4.1 Characteristics for pMOSFETs with Different Channel Length....................................................27
4.1.1 Id,lin-Vg curve for pMOSFETs........................27
4.1.2 Id,sat-Vg curve for pMOSFETs........................31
4.1.3 Id –Vd curve for pMOSFETs..........................33
4.1.4 Effective mobility..................................35
4.2 Comparison with Biaxial and Embedded SiGe Stressor Characteristics...........................................37
4.3 Device Degradation by rising Temperature for pMOSFETs under CHC Stress..........................................41
4.3.1 Vt,lin shift degradation for pMOSFETs...............41
4.3.2 Id,sat degradation for pMOSFETs.....................43
4.3.3 Vt,lin shift in different temperatures and stress voltages..................................................44
4.3.4 Id,sat degradation in different temperatures and stress voltages...........................................46
4.3.5 Comparison of Vt,lin shift degradation for devices..47
4.3.6 Comparison of Id,sat degradation for devices........49
4.4 Interface States and Oxide Trapped Charges............51
4.5 The CHC Degradation Model.............................54
4.6 Lifetime Prediction...................................59
Chapter 5 CONCLUSION AND FUTURE WORKS
5.1 Conclusion............................................60
5.2 Future Works..........................................60
REFERENCES................................................61



[2-1] S. H. Olsen, A. G. O’Neill, S. Chattopadhyay, L. S. Driscoll, et al., “Study of Single- and Dual-Channel Designs for High-Performance Strained-Si-SiGe n-MOSFETs,” IEEE Transactions on Electron Devices, Vol. 51, No. 7, pp. 1245-1253, July 2004.
[2-2] K. D. Goutam, C. Sanatan, S. K. K. Kelvin, H. O. Sarah, et al., “Impact of Strained-Si Thickness and Ge Out-Diffusion on Gate Oxide Quality for Strained-Si Surface Channel n-MOSFETs,” IEEE Transactions on Electron Devices, Vol. 53, No. 5, pp. 1142-1152, May 2006.
[2-3] T. Mizuno, N. Sugiyama, T. Tezuka, T. Numata, et al., “Design for Scaled Thin Film Strained-SOI CMOS Devices with Higher Carrier Mobility,” IEDM Technical Digest, pp. 31-34, 2002.
[2-4] S. G. Badcock, A. G. O’Neill, and E. G. Chester, “Device and Circuit Performance of SiGe/Si MOSFETs,” Solid State Electron, Vol. 46, No. 11, pp. 1925-1932, November 2002.
[2-5] L. Yan, S. H. Olsen, M. Kanoun, R. Agaiby, et al., “Gate Leakage Mechanismsin Strained Si Devices,” Journal of Applied Physics, Vol. 100, No. 10, pp. 104507, 2006.
[2-6] S. Ito, H. Namba, K. Yamaguchi, et al., “Mechanical Stress Effect of Etch-stop Nitride and Its Impact on Deep Submicron Transistor Design,” IEDM Tech. Dig., pp. 247-250, December 2000.
[2-7] A. Shimizu, K. Hachimine, N. Ohki, et al., “Local Mechanical-Stress Control (LMC): A New Technique for CMOS-performance Enhancement,” IEDM Tech. Dig., pp. 433 - 436, December 2001.
[2.8] N. Tamura, Y. Shimamune, H. Maekawa, “Embedded Silicon Germanium (eSiGe) technologies for 45nm nodes and beyond,” International Workshop on Junction Technology, pp. 73-77, May 2008.
[2.9] S. G. Badcock, A. G. O’Neill, and E. G. Chester, “Device and Circuit Performance of SiGe/Si MOSFETs,” Solid State Electron, Vol. 46, No. 11, pp. 1925-1932, November 2002.
[2.10] C.-H. Chen, T. L. Lee, T. H. Hou, C. L. Chen, et al., “Stress Memorization Technique (SMT) by Selectively Strained-Nitride Capping for Sub-65nm High-Performance Strained-Si Device Application,” Digest of Technical Papers - Symposium on VLSI Technology , pp. 56-57, 2004.
[2.11] T. Miyashita, T. Owada, A. Hatada, Y. Hayami, et al., “Physical and Electrical Analysis of the Stress Memorization Technique (SMT) using Poly-Gates and its Optimization for Beyond 45-nm High-Performance Applications,” IEDM Tech. Dig., pp. 1-4, December 2008.
[2.12] A. T. Tilke, C. Stapelmann, M. Eller, K. H. Bach, et al., “Shallow Trench Isolation for the 45-nm CMOS Node and Geometry Dependence of STI Stress on CMOS Device Performance,” IEEE Transactions on Semiconductor Manufacturing, Vol. 20, No. 2, pp. 59-67, May 2007.
[2.13] E. Ungersboeck, V. Sverdlov, H. Kosina, et al., “Strain Engineering for CMOS Devices,” ICSICT., pp. 124-127, April 2006.
[2.14] C. S. Lu, H. C. Lin, T. Y. Huang, et al.,“Optimization of SiN Film by Varying Precursor Flow Conditions and its Impacts on Strained Channel”, IEEE Trans. Electron Devices, pp. 117-120, 2007.
[2.15]Y. Toivola, J. Thurn, and R. F. Cook, “Influence of Deposition Conditions on Mechanical Properties of Low-pressure Chemical Vapor Deposited Low-stress Silicon Nitride Films,” Appl. Phys. J., Vol. 94, No. 10, pp. 6915-6922, 2003.
[2.16] K. W. Ang, J. Lin, C. H. Tung, et al., “Strained nMOSFET with Embedded Source/Drain Stressors and strain-Transfer Structure (STS) for Enhanced Transistor Performance,” IEEE Transactions on Electron Devices, Vol. 55, No. 3, pp. 850-857, March 2008.
[2.17] H. Okamoto, A. Hokazono, K. Adachi, N. Yasutake, et al., “In situ Doped Embedded-SiGe SourceDrain Technique for 32nm Node p-Channel Metal–Oxide–Semiconductor Field-Effect Transistor, “Japanese Journal of Applied Physics, Vol. 47, No. 4, pp. 2564–2568, April 2008.
[2.18] K. Rim, J. L. Hoyt, J. F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s, “IEEE Transactions on Electron Devices, Vol. 47, No. 7, pp.1406-1415, July 2008.
[2.19] K. Rim, S. Koester, M. Hargrove, J. Chu, “Strained Si NMOSFETs for High Performance CMOS Technology,” Symposium on VLSl Technology Digest of Technical Papers, pp.59-60, Jun 2001.
[2.20] D. K. Nayak, S. K. Chun, “Low-field hole mobility of strained Si on (100) Si1−xGex substrate,” Appl. Phys. Lett. Vol. 64, No. 19, pp. No.12514-2516, May 1994.
[2.21] Y. Sun, S. E. Thompson, T. Nishida, “Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors,” Journal of Applied Physics, Vol. 101, No. 10, pp. 104503-104503-22, May 2007.
[2.22] A. Schwerin, W. Hansch, W. Weber, “The Relationship Between Oxide Charge and Device Degradation: A Comparative Study of n- and p-Channel MOSFET’s,” IEEE Transactions on Electron Devices, Vol. Ed-34, No. 12, December 1987.
[2.23] Renesas Technology Corp, “semiconductor reliability handbook,” pp. 110, 2006.
[2.24] W. Shockley, “Problems related to p-n junctions in silicon,” Solid-State Electronics, Vol. 2, No. 1, pp. 35-67, January 1961.
[2.25] M. Song, K. P. MacWilliams, J. C. S Woo, “Comparison of NMOS and PMOS hot carrier effects from 300 to 77 K,” IEEE Transactions on Electron Devices, vol. 44, No. 2, pp. 268-276, February 1997.
[2.26] S. H. Hong, S. M. Nam, B. O. Yun, B. J. Lee, C. G. Yu and J. T. Park, “Temperature dependence of hot-electron-induced degradation in MOSFET''s,” Microeletronics Reliability, Vol. 39, pp. 809-814, June 1999.
[2.27] T. Chen, C. Zhu, L. Najafizadeh, B. Jun, A. Ahmed, R. Diestelhorst, G. Espinel, J. D. Cressler, “CMOS reliability issues for emerging cryogenic lunar electronics applications,” Solid-State Electronics, Vol. 50, No. 6, pp. 959–963, June 2006.
[2.28] C. H. Tu, S. Y. Chen, M. H. Lin, M. C. Wang, S. H. Wu, H. S. Huang, “The switch of the worst case on NBTI and hot-carrier reliability for 0.13 mm pMOSFETs,” Applied Surface Science, Vol. 254, No. 19, pp. 6186-6189 ,July 2008.
[2.29] P. Aminzadeh, M. Alavi, D. Scharfetter, “Temperature dependence of substrate current and hot carrier-induced degradation at low drain bias,” Symposium on VLSI Technology Technical Digest, pp. 178-179, June 1998.
[2.30] W. Yeh, Y. Chen, F. Huang, C. Hsu, “The Improvement of High-k/Metal Gate pMOSFET Performance and Reliability Using Optimized Si Cap/SiGe Channel Structure,” IEEE Transactions on Devices and materials reliability, Vol. 11, No. 1, pp. 7-12, March 2011.
[2.31] W.-Y Loh, P.Majhi, S.-H. Lee, J.-W. Oh, “The effects of Ge composition and Si cap thickness on hot carrier reliability of Si/Si1-xGex/Si p-MOSFETs with high-K/metal gate,” Symposium on VLSI Technology Digest of Technical, pp. 56-57, June 2008.
[2.32] M. Tang, Y. Fang, David C. Chen, and C. Yeh, “Hot-Carrier and Fowler–Nordheim (FN) Tunneling Stresses on RF Reliability of 40-nm PMOSFETs With and Without SiGe Source/Drain,” IEEE Transactions on Electron Devices, Vol. 56, No. 4, April 2009.
[3.1] T. Krishnamohan, Z. Krivokapic, K. Uchida, Y. Nishi, et al., “High-Mobility Ultra-Thin Strained Ge MOSFETs on Bulk and SOI with Low Band-to-Band Tunneling Leakage: Experiments,” IEEE Transactions on Electron Devices, Vol. 53, No. 5, pp. 990–999, May 2006.
[4.1] S. Y. Chen et al., “Temperature Effects on the Hot-Carrier Induced Degradation of PMOSFETs,” IIRW Final Report, pp. 163-166, September 2006.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊