跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮英俊
研究生(外文):NGUYEN ANH TUAN
論文名稱:一種區域性空調之研究
論文名稱(外文):Study of a Regional Air-conditioning Mechanism
指導教授:黃國修黃國修引用關係
指導教授(外文):K.David. Huang
口試委員:曾憲中艾和昌蘇評揮吳浴沂高木榮洪祖全
口試委員(外文):Sheng-Chung TzengHerchang AyJet Ph.H. ShuYuh-Yih WuKao Mu- JungTzu-Chen Hung
口試日期:2012-01-05
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:109
中文關鍵詞:區域空調節能熱舒適性要求氣流氣流循環計算流體動力學 (CFD)田口正交陣列優化設計
外文關鍵詞:Regional air-conditioningenergy-savingthermal comfort demandsairflow circulation cellcomputational fluid dynamics (CFD)Taguchi’s orthogonal arraysoptimal design
相關次數:
  • 被引用被引用:2
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
創造一個更舒適,健康,安全,高效節能,及控制二氧化碳增加的房間,是家庭和工作環境廣泛應用的一個重要目標。研究提出了節能設備一個新的概念,即一個區域空調機制(RACM)。RACM系統由一個主管構成,其上再配置一環狀的進氣口和一個較低的環狀出風口,設置在一個房間裡。 RACM所產生的氣流循環和潛在的節能,可滿足個人的熱舒適性。本實驗在房間裡放置人體模型並進行研究。 RACM可以在房間裡形成兩個獨立的溫度區域,也就是RACM安裝(人體模型一)和其他區域沒有 RACM安裝(人體模型二)區域。在兩個人體模型之間溫度差最高可以達到6°C。建制此實驗平台,測試數值模擬的有效性,並與模擬測試結果相互驗證。數值分析的目標是:(1)研究使用無因次化的RACM系統中物理和幾何參數的影響,以獲得最佳的氣流,溫度分佈,並指出在一個空的圓柱形房間此區域的熱舒適度指數。(2)作出一個適當的參數調整,為創造一個較好的使用計算流體動力學(CFD)的氣流循環。將三十三次模擬分為8組,每組出線口角(phi_1),出風口和地板表面之間的距離(L2),出風口高度(Wout),出風口真空壓力(Pout),不同的參數,進風口的角度(phi_1), 進風口和地板表面的距離(L1),進風口高度(Win)和雷諾數(Re)。氣流循環在合適的範圍內調整,並在所要維持的區域和RACM需要的氣流循環中,實現可接受熱舒適性指標,其中包含如熱舒適度(PMV),垂直溫度剖面,地板表面溫度值。這項研究還使用田口正交陣列評估八個設計參數的重要性,為提高氣流循環節能(Eoz)在區域內的性能,phi_2 ,L2, Wout, Pout, phi_1, L1, Win 和冷卻空氣供應流率 (Qin)。田口方法的每個參數的水平選擇合適的範圍內,上述調整的基礎。結果表明,6組 RACM系統參數,Wout,Pout,phi_1,L1,Win和Qin在此區域產生極大的影響氣流循環的能源效率。 8個設計參數包括用於信號信噪比(SNR)的方法,在RACM系統使用,以確定其最佳值。在優化設計參數,可以成功地創建了兩個熱區域模擬研究空間。 RACM可以產生較高的熱舒適 PMV = -0.37和氣流循環的能源效率可達到約57.7%。 RACM系統推薦使用各種熱環境,包括公共汽車,火車,工廠,公共建築,寫字樓,家庭,等。

Making a room more comfortable, healthy, safe, and energy-efficient, while limiting the increase of CO2, is an important goal with broad implications at home and work environments. This study presents a new concept in energy-saving equipment, namely, a regional air-conditioning mechanism (RACM). RACM system consists of a main duct with an upper round inlet port and a lower round outlet port located in a room. RACM can produce an airflow circulation cell for satisfying the thermal comfort demands of users and potentially be energy-saving. The experimental study was examined with manikins in the room. RACM can create two independent thermal environment regions in the room, that is, the occupied zone with RACM installation (manikin one) and the other zone without RACM installation (manikin two). The highest temperature difference between both manikins was up to 6oC. Experimental platforms were set up to test the validity of a simulation model, and the test results showed good agreement with simulation. The numerical analysis targets two areas: (1) study the effects of the physical and geometrical parameters of RACM system to obtain the optimal airflow, temperature distribution, and thermal comfort indices in the occupied zone in an empty cylindrical room using non-dimensional form; (2) determine their suitable adjustments for creating a better airflow circulation cell using computational fluid dynamics (CFD) approach. Thirty-three case studies were divided into eight groups with various values of outlet port angle (phi_2), distance between outlet port and floor surface (L2), outlet port height (Wout), outlet vacuum pressure (Pout), angle of inlet port (phi_1), distance between inlet port and floor surface (L1), inlet port height (Win), and Reynolds number (Re). Under suitable range of adjustments, the airflow circulation cell is hold well in the occupied zone. RACM takes the airflow circulation cell to achieve values in acceptable thermal comfort indices such as predicted mean vote (PMV), vertical temperature profiles and floor surface temperature. The study also used Taguchi’s orthogonal arrays to evaluate the importance of eight design parameters for improving airflow circulation energy efficiency (Eoz) performance in the occupied zone:phi_2, L2, Wout, Pout,phi_1, Win, L1, and cooling air supply flow rate (Qin). The level of each parameter in Taguchi’s method is chosen based on the suitable range of adjustments above. The results show that six parameters of RACM system including, Wout, Pout, phi_1, Win, L1, and Qin greatly influence airflow circulation energy efficiency in the occupied zone. Included with eight design parameters is used a signal to noise ratio (SNR) method to identify their optimal values for use in RACM system. Under the optimal design parameters, two thermal areas can be successfully created in the study’s simulated room, i.e., the occupied zone and the rest of the room. RACM can produces a high thermal comfort PMV of 0.37 and airflow circulation energy efficiency can reach about 57.7% in the occupied zone in the room. RACM system is therefore recommended for use in various thermal environments, including buses, trains, factories, public building, offices, homes, and so on.

CONTENTS

摘要 …...i
ABTRACT …..ii
ACKNOWLEDGEMENT ….iv
CONTENTS …..v
List of Tables ...viii
List of Figures .....ix
Chapter 1 INTRODUCTION …...1
1.1 Background and motivation …...1
1.2 Literature review …...3
1.2.1 Conventional ventilation systems……………………………….3
1.2.2 Personalized air-conditioning systems………………………….5
1.3 Research objective and scope………………………………………..13
Chapter 2 EXPERIMENTAL STUDY …15
2.1 Introduction …15
2.2 Experimental method …15
2.2.1 RACM system …15
2.2.2 Experimental apparatus …16
2.2.3 Experimental setting…………………………………………...16
2.2.4 Numerical model setting……………………………………….20
2.2.5 Measuring procedure…………………………………………..20
2.3 Results and discussion …22
2.3.1 Stability of the system…………………………………………22
2.3.2 Comparisons of the measured thermocouple data…………….25
2.3.3 Airflow and temperature distribution between two manikins...28
2.3.4 Validation of CFD model………………………………………31
2.3.4.1 Tested airflow distribution……………………………31
2.3.4.2 Testing results…………………………………………32
2.4 Conclusions…………………………………………………………..35
Chapter 3 NUMERICAL ANALYSIS…………………………………………..36
3.1 Introduction…………………………………………………………..36
3.2 RACM pipe…………………………………………………………..36
3.3 Thermal comfort calculations………………………………………..36
3.3.1 Predicted mean vote……………………………………………38
3.3.2 Vertical air temperature difference and floor surface
temperature……………………………………………………39
3.4 Numerical simulation of the RACM…………………………………40
3.4.1 Description of the room model………………………………...40
3.4.2 Model geometry and grid generation………………………….40
3.4.3 Non-dimensional form of the governing equations and boundary
condition………………………………………………………..44
3.4.3 Group studies…………………………………………………..46
3.4.4 Calculus procedure…………………………………………….51
3.5 Results and discussion……………………………………………….52
3.5.1 Temperature and velocity distribution………………………...52
3.5.2 Predicted mean vote……………………………………………65
3.5.3 Vertical profiles and floor surface temperature……………….68
3.6 Conclusions…………………………………………………………..72
Chapter 4 A TAGUCHI APPROACH FOR OPTIMIZATION OF DESIGN
PARAMETER……………………………………………………….74
4.1 Taguchi approach…………………………………………………….74
4.1.1 Fundamental of Taguchi approach…………………………….74
4.1.2 A model for RACM performance evaluation………………….75
4.1.3 Numerical simulation…………………………………………..77
4.1.3.2 Numerical method……………………………………..77
4.1.3.2 Identification of prominent RACM design parameters.79
4.2 Results and discussion……………………………………..…………81
4.2.1 Temperature and velocity distributions………………………..81
4.2.2 Identification of prominent parameters....................................84
4.2.3 Determination of the optimal condition……………………….90
4.2.4 Predicted mean vote……………………………………………90
4.3 Conclusions…………………………………………………………..92
Chapter 5 CONCLUSIONS AND RECOMMENDATIONS…………………...93
5.1 Conclusions…………………………………………………………..93
5.2 Recommendations for future work…………………………………..95
REFERENCES………………………………………………………………….96
NOMENCLATURE……………………………………………………………104
Biography………………………………………………………………………107

[1]M. Detelin, “Standards in thermal comfort,” Annual International Course: Ventilation and Indoor climate, Avangard, Sofia, 2002, pp. 147-157.
[2]Y. Murakami, M. Terano, K. Mizutani, M. Harada, S. Kuno, “Field experiments on energy consumption and thermal comfort in the office environment controlled by occupants’ requirements from PC terminal,” Build. Environ, Vol. 42, 2007, pp. 4022-4027.
[3]B. Yang, Thermal comfort and indoor air quality evaluation of a ceiling mounted personalized ventilation system integrated with an ambient mixing ventilation system, Ph.D. Thesis, National University of Singapore, Singapore, 2009.
[4]A. K. Melikov, G. Pitchurov, K. Naidenov, G. Langkilde, “Field study on occupant comfort and the office thermal environment in rooms with displacement ventilation,” Indoor Air, Vol. 15, no. 3, 2005, pp. 205-214.
[5]F. S. Bauman, H. Zhang, E. A. Arens, C. Benton, “Localized comfort control with a desktop task conditioning system: laboratory and field measurements,” ASHRAE Trans, Vol. 99, Pt. 2, 1993, pp. 733-749.
[6]F. Sodec, R. Craig, “The under-floor air supply system-The European experience,” ASHRAE Trans, Vol. 66, Pt. 2, 1990, pp. 690-694.
[7]H. J. Spoormarker, “Low-pressure Under-floor HVAC system,” ASHRAE Trans, Vol. 96, Pt. 2, 1990, pp. 670-677.
[8]F. Bauman, T. Webster, “Outlook for under-floor air-distribution,” ASHRAE J, Vol. 43, no.6, 2001, pp. 18-27.
[9]F. Bauman, P. Pecora, T. Webster, “How low can you go? Airflow performance of low-height under-floor plenums,” Center for the Build Environment, University of California, Berkeley, October, 1999.
[10]I. Krepchin, “Under-floor air systems gain foothold in North America,” E-Source Report, ER-01-1, Boulder, Colo: Financial Times Energy, Inc., January, 2001
[11]D. Faulkner, W. J. Fisk, D. P. Sullivan, “Indoor airflow and pollutant removal in a room with floor-based task ventilation: results of additional experiments,” Build. Environ, Vol. 30, no. 3, 1995, pp. 323-332.
[12]T. Webster, E. Ring, F. Bauman, “Supply fan energy use in pressurized under-floor air distribution systems,” Center for the Built Environment, University of California, Berkeley, October, 2002.
[13]K. Loudermilk 1999 Under-floor air-distribution solutions for open office applications. ASHRAE Trans, Vol. 105, Pt. 1, pp. 605-613.
[14]C.T. Barker, G. Anthony, R. Waters, A. McGregor, M. Harrold, “Air Conditioning: Impact on the built environment,” New York Nichols Publishing Company, 1987.
[15]K. Tsuzuli, E. A. Arens, F. S. Bauman, D. P. Wyon, “Individual thermal comfort control with desk-mounted and floor mounted task/ambient condition (TAC) systems,” Proceedings: Indoor Air 99, 1999, 368-374.
[16]F. S. Bauman, T. G. Carter, A. V. Baughman, E. A. Arens, “Field study of the impact of a desktop task/ambient conditioning system in office buildings,” ASHRAE Trans Vol. 104, Pt. 1, 1998, 1153-1171.
[17]F. Bauman, E. A. Arens, H. Zhang, “Benton Localized comfort control with a desktop task conditioning system: laboratory and field measurements,” Center for the Build Environment, University of California, Berkeley, October, 1993.
[18]H. Levy, “Individual control by individual VAV,” Proceedings of RoomVent 2002, 8th International Conference on Air Distribution in Rooms, Moltke''s palace, Copenhagen – Denmark, 2002, pp. 45-52.
[19]D. Song, S. Kato, J. H. Yang, S. Zhu, T. Chikamoto, “Study on the individual control system considering human thermal adaptation” Proceedings of RoomVent 2004 , 9th International Conference on Air Distribution in Rooms, University of Coimbra, Portugal, 5-8th September 2004, pp. 135-139.
[20]K. Tsuzuki, E. A. Arens, F. S. Bauman, D. Wyon, “Individual thermal control with desk-mounted and floor-mounted task/ambient conditioning (TAC) systems,” Proceedings of the Indoor Air 99, Edinburgh, Scotland, August, 1999, pp. 368-75.
[21]F. S. Bauman, H. Zhang, E. A. Arens, C. C. Benton, “Local thermal comfort control with a desktop task conditioning system: laboratory and field measurements,” ASHRAE Trans, 1993, 99, Pt. 2, 733-749.
[22]T. Akimoto, F. S. Bauman, E. A. Arens, C. C. Benton, “Field study of a desktop-based task conditioning system,” Center for the Built Environment, University of California, Berkeley, January, 1996, 490, 35-46.
[23]T. Nobe, M. Shoji, S. Shimizu, “Chair-mounted isothermal airflow generator,” Proceedings of RoomVent 2004, 9th International Conference on Air Distribution in Rooms, University of Coimbra, Portugal, 5-8th September 2004, pp. 114-118.
[24]N. Imagawa, T. Mima, “Installation example of all air system-Fujita Head-quarters Buildings,” J. Soc. Heating, Air-Cond. Sanit. Eng., Vol. 65, no. 7, 1991, pp. 395-401.
[25]H. C. Chiang, M. C. Yen, R. Hu, “Numerical study of personal air-conditioning system composed of partition-type fan coil units and a dedicated outside air system,” Proceedings of RoomVent 2002, 8th International Conference on Air Distribution in Rooms, Moltke''s palace, Copenhagen - Denmark, 2002, pp. 221-224.
[26]H. C. Chiang, C. C. Su, C. S. Pan, F. H. Tsau, “Study of an innovative partition-type personal modulation air-conditioning system,” Proceedings of Indoor Air 2002, 9th International Conference on Indoor Air Quality and Climate, Monterey, California, Monterey, CA, USA, June 30 - July 5, 2002, Vol. 4, pp. 289-294.
[27]C. S. Pan, H. S. Wu, H. C. Chiang, M. C. Yen, “Experimental study on the air change effectiveness of a personalized air-condition and ventilation system,” Proceedings of the 26th National Conference on Theoretical and Applied Mechanics, Hu-Wei, Taiwan, 2002, vol. B047, pp.1-8.
[28]C. S. Pan, H. C. Chiang, M. C. Yen, C. C. Wang, “Thermal comfort and energy saving of an personalized PFCU air-conditioning system,” Energy Build, 2005, Vol. 37, pp. 443-449.
[29]D. Song, S. Kato, J. H. Yang, S. Zhu, T. Chikamoto, “Study on the individual control system considering human thermal adaption,” Proceedings of RoomVent 2004 , 9th International Conference on Air Distribution in Rooms, University of Coimbra, Portugal, 5-8th September 2004, pp. 157-161.
[30]S. Watanabe, T. Shimomura, K. Miyazaki, “Thermal evaluation of a chair with fans as an individually controlled system,” Build. Environ, 2009, Vol. 7, no. 7, pp. 1392-1398.
[31]J. Kaczmarczyk, A. K. Melikov, Z. Bolashikov, L. Nikolaev, P. O. Fanger. “Human response to five designs of personalized ventilation,” HVAC&R Res., 2006, Vol. 12, no. 2, pp. 367-84.
[32]M. Sasaki, T. Yanai, Y. Iwasa, M. Suzuki, “Study on task-air-conditioning-system using low-partition unit,” Summaries of Technical papers of Annual Meeting Architectural Institute of Japan, 2004, 1479-82.
[33]J. Niu, N. Gao, M. Phoebe, H. Zuo, “Experimental study on a chai-based personalized ventilation stem,” Build Environ, 2007 Vol. 42, no. 2, 913-925.
[34]A. K. Melikov, “Personalized ventilation,” Indoor Air, 2004, Vol. 14, Suppl. 7 157-167.
[35]P. O. Fanger, “Indoor air quality in the 21st century: Search for excellence,” Indoor Air 2000, Vol. 10, no. 2, 68-73.
[36]J. Kaczmarczyk, A. K. Melikov, P. O. Fanger, “Human response to personalized ventilation and mixing ventilation,” Indoor Air, 2004, Vol. 14, Suppl. 8, 17-29.
[37]Q. Zeng, J. Kaczmarczyk, A. K. Melikov, P. O. Fanger, “Perceived air quality and thermal sensation with personalized ventilation system,” Proceedings of RoomVent 2002, 8th International Conference on Air Distribution in Rooms, Moltke''s palace, Copenhagen – Denmark, 2002, 61-64.
[38]F. Bauman, V. Inkarojrit, Z. Hui “Laboratory Test of the Argon Personal Air-Conditioning System (APACS),” Center for Environmental Design Research, University of California, Berkeley, 2000, 1-13.
[39]G. R. Newsham, S. Mancini, J. A. Veitch, R. G. Marchand, W. Lei, K. E. Charles, C. D. Arsenault, “Control strategies for lighting and ventilation in offices: effects on energy and occupants,” Int. Build, 2009, Vol. 1, no. 2, pp. 101-121.
[40]S. H. Cho, W. T. Kim, M. Z, Uddin, “Thermal characteristics of a personal environment modules task air conditioning system: an experimental study,” Energy Convers. Manag. 2001, Vol. 42, no. 8, 1023-1031.
[41]K. D. Huang, S. C. Tzeng, W. P. Ma, M. F. Wu, “Intelligent solar-powered automobile-ventilation system,” Appl Energy, 2005, Vol. 80, no. 2, pp. 141-154.
[42]K. D. Huang, S. C. Tzeng, T. M. Jeng, W. D. Chiang, “Air conditioning system of an intelligent vehicle cabin”. Appl Energy, 2006, Vol. 83, pp. 545-557.
[43]FLUENT 6.2. User guide, all volumes. Lebanon, NH 03766, USA: FLUENT Inc.; 2005 [June 2001].
[44]ASHRAE Thermal Comfort Program, Marc fountain, Environmental Analytics, Charlie Huizenga, UC. Berkely, 1995.
[45]ISO 7730: 1994 (E) - Moderate thermal environments-determination of PMV and PPD indices and specification of the conditions for thermal comfort, International Organization for Standards, Geneva, Switzerland 1994.
[46]ASHRAE Inc. ASHRAE handbook fundamentals (2004), Chapter 8-Thermal Comfort (pp. 8.1-8.29). Atlanta, USA.
[47]GAMBIT 2.4. User guide, all volumes. Lebanon, NH 03766, USA: FLUENT Inc.; 2007.
[48]K.D. Huang, N.A. Tuan, Y.C. Shih, “Energy-saving and thermal comfort studies of a regional air-conditioning mechanism.” Proc. IME J. Power Energy., 2010, Vol. 223, no.1, 12-33.
[49]K. D. Huang, N. A. Tuan, T. C. Liu, K. T. Tseng, “An air-conditioning energy-saving mechanism,” Paper presented at the 19th international symposium on Transport Phenomena, Reykjavik, Iceland, 2008, pp. 124-129.
[50]K. D. Huang, N. A. Tuan, K. T. Tseng, “A numerical study of regional air-conditioning mechanism,” 2008 IEEE International Conference on Sustainable Energy Technologies-ICSET 2008, Singapore, 2008, pp. 722-727.
[51]G. Taguchi, Taguchi techniques for quality engineering, Quality Resouces, New York, 1987.
[52]M. S. Phadke, “Quality engineering using robust design,” Prentice Hall, New Jersey, 1989.
[53]R. K. Roy, “Design of experiments using the Taguchi approach,” John Wiley&Sons Inc., 2001.
[54]K. D. Huang, N. A. Tuan, “Low cooling energy consumption of room with regional air conditioning mechanism,” International Conference on Power Engineering, Kobe, Japan, 2009, Vol. 3, pp. 167-172.
[55]K. D. Huang, N. A. Tuan, K. T. Tseng, “CFD study of an air-conditioning energy-saving mechanism,” The First International Conference on Applied Energy, Hong Kong, 2009, pp. 123-128.
[56]N. A. Tuan, K. D. Huang, “Design parameter analysis of a novel energy-saving regional air-conditioning system,” Advanced Science Letters. (Accepted).
[57]K. D. Huang, N. A. Tuan, “Numerical and experimental analysis of an air conditioning energy-saving mechanism,” Paper presented at 2nd Asian Symposium on Computational Heat Transfer and Fluid Flow, Jeju, Korea, 2009.
[58]K. D. Huang, N. A. Tuan, “Numerical analysis of an air-conditioning energy-saving mechanism,” Build. Simul.: Int. J., 2010, Vol. 3, no. 1, pp. 63-73.
[59]N. A. Tuan and K. D. Huang, “Airflow circulation cell study of an air-conditioning energy-saving mechanism,” Appl. Therm. Engineering, 2001, Vol. 31, pp. 3956-3962.
[60]Nutek Inc., Qualitek-4, Automatic design and analysis of Taguchi experiments. Bloomfield hills, MI, USA, 2007.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top