跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 20:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:涂淑惠
研究生(外文):Shu-Hui Tu
論文名稱:以運算轉導放大器及電容器所設計之具有任意相位差的正弦振盪電路
論文名稱(外文):OTA-C Arbitrary-Phase-Shift Sinusoidal Oscillators
指導教授:黃育賢
指導教授(外文):Yuh-Shyan Hwang
口試委員:王多柏邱弘緯馬斌嚴郭建宏邱文偉史富元陳建中吳東旭
口試委員(外文):To-Po WangHung-Wei ChiuBin-Yan MaChien-Hung KuoWen-Wei ChiuFu-Yuan ShihJiann-Jong ChenDong-Shiuh Wu
口試日期:2012-07-09
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:140
中文關鍵詞:類比電路設計振盪電路正交振盪電路具有任意相位差的振盪電路相位差的補償技術電路自身的振幅控制技術運算轉播放大器
外文關鍵詞:analog circuit designoscillatorsquadrature oscillatorsarbitrary-phase-shift oscillatorsphase-shift compensationnative amplitude controloperational transconductance amplifiers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
西元二零零八年,應用分數微積分的觀念,將普通電容器的容抗1/sC擴大為分數電容器的容抗1/sαC,其中0<α<1,因而提出具有任意相位差的輸出信號的二階或三階正弦振盪電路。這個方法,除了電路的實現過程複雜難懂外,在目前現實世界中沒有一個實際存在的元件能夠直接代表這麼一個分數電容器,更遑論在積體電路中被實現。所以,找到一個簡單的實現方法,並且使用在積體電路中能夠容易被實現的普通元件來做設計成為一個在本論文中有價值的研究方向及討論的主題。
在本論文中,首先以N階正弦振盪電路的特徵方程式及代表一個九十度相位差的子轉移函數為實現電路的核心,並以一系列代數分解法合成一個具有九十度相位差的N階正弦振盪電路。然後,再以代表正電導或負電導的運算轉導放大器與需要的接地電容器(屬於具有九十度相位差的N階正弦振盪電路的一部分)並聯,吾人即可獲得具有任意相位差的輸出信號的N階正弦振盪電路。這個轉換無須在回授迴路中增加任何電路元件。
既然這是一個具有任意相位差的輸出信號的N階正弦振盪電路,這個相位差的精準度就很重要。由於本文所提出的這一個具有任意相位差的輸出信號的N階正弦振盪電路的每一個相位差都是對應正弦振盪電路的每一個特別的小部分電路,這一個設計上的優點使得吾人能經由這一個特別小部分的電路中使用的運算轉導放大器的轉導值的非理想頻率響應函數,及運算轉導放大器的輸出及輸入寄生電容及寄生電導的實際相位圖找出其補償的方法。在本論文中,對應六種不同情況的六種補償技術被提出來以增加每一個相位差的精準度。
西元二零零九年,一個不須要外加任何電路,只由振盪電路本身內部參數的改變即可放大或縮小輸出信號振幅大小的技術被提出來。為了降低這個技術產生較高的相對於振幅放大所得輸出信號總諧波扭曲的增大值,新的由振盪電路本身內部參數的改變即可調整輸出信號振幅大小的技術成為本論文進行研究工作的另一個主題。本研究主要採用「能量守恆」定律。當我們提供較大的偏壓電流給當作主動元件的運算轉導放大器時,如果同時增長運算轉導放大器裡面電晶體閘極的長度,就能固定設計電路時所須要的轉導值。所以,在主動元件的偏壓電流變大及電晶體閘極的長度增長下,運算轉導放大器輸出電流與輸入電壓關係圖中的飽和輸出電流值也增大了,這個增大的飽和輸出電流就使得輸出信號的振幅得以增加。這一個振盪電路自身調整振幅大小的新方法證實:當振幅放大時,的確具有較低的總諧波扭曲的增大值。
最後,H-Spice的模擬結果及離散式元件的實驗均證實本論文研究成果的正確性。


In 2008, a fractional calculus approach (due to the phase of sα, απ/2, where 1>α>0) was applied to generate a second-/third-order arbitrary-phase-shift sinusoidal oscillator (APSO), whereas the approach is rather complicated. In addition, with a fractional order α of Z =1/Csα, where α = 0.5 or α < 1, the fractional capacitance imitated by a semi-infinite series of RC trees suffers from limited investigations because of the nonexistence of a real fractance device. How to generate an APSO using a simple methodology and practical elements (easy to be fabricated on an IC chip) is worthy of continued investigation.
In the thesis, both the characteristic equation of an nth-order sinusoidal oscillator and the sub-transfer function of a quadrature as a core are simultaneously used to synthesize an nth-order OTA-C quadrature sinusoidal oscillator (QO). Furthermore, the QO is advanced to an nth-order APSO by phase transformation from a quadrature to an arbitrary phase shift via selectively superposing a required number of single-ended-input (SEI) operational transconductance amplifiers (OTAs) with +/− transconductances in parallel with assigned grounded capacitors on the QO. Such advancement acquires no extra circuitries in the feedback loops.
The phase shift accuracy is essential for the output parameter of an nth-order arbitrary-phase-shift sinusoidal oscillator. Since some particular and small part in the APSO may individually and arbitrarily determine the phase shift between two relevant nodal voltages, the synthesis presented in this thesis contributes the advantage which is capable of applying compensation to the sub-circuitry relative to each phase shift. Six compensation schemes for reducing the phase shift deviation are proposed with carefully considering the non-ideal frequency dependent transconduc- tance of an OTA and its input and output parasitics.
In 2009, a native amplitude limiting control for an oscillator was reported without extra sub-circuitries. However, how to reduce rather high variation of THD with respect to amplitude change of the scheme is a piece of valuable work. A transconductance of an OTA employed may be assigned and fixed by magnifying the length of MOS gate and the bias current properly. In addition, when the length of MOS gate is magnified, the output current with respect to input voltage difference is with a broader level between the maximum and minimum output currents. The broader the level between the maximum and minimum output currents is the higher the amplitude of output oscillation signals. Based on energy conservative theorem, the larger input bias current produces the higher output oscillation signal. A new native amplitude limiting scheme without using extra sub-circuitries is then presented which enjoys lower variation of THD with respect to amplitude change.
Finally, H-Spice simulations and one discrete component experiment are used to validate theoretical predictions.


Abstract……………………………………………………………………………...i
摘要…………………………………...……...………………….……………..…....iii
Acknowledgements……………………………………………………………….... v
Contents…………………………………………………………………………..….vi
Abbreviations……………………………………………………………… viii
List of Tables……………………………………………………………………….x
List of Figures…………………………………………………………………xii

Chapter 1 Introduction……………………………………………………………..1

Chapter 2 Background and Literature Review.......................................................11
2.1 Operational Transconductance Amplifier (OTA), Second-Generation
Current Conveyor (CCII), and Current-Controlled Conveyor (CCCII)….....11
2.2 OTA-Based Sinusoidal Oscillators in the Literature………………17
2.3 CCII/CCCII-Based sinusoidal Oscillators in the Literature…………21
2.4 Arbitrary-Phase-Shift Oscillators using Fractional Calculus Approach..25
2.5 Motivation of the Research in this Thesis…………….................…………27

Capter 3 Generation of Quadrature Oscillator and Arbitrary-Phase-Shift Oscillators ………………………………………………………………..31
3.1 Characteristic Equation of Oscillators………………..........………………..31
3.2 Generation of Second-Order Quadrature/Arbitrary-Phase-Shift Oscillators.34
3.3 Stability of Second-Order Arbitrary-Phase-Shift Oscillators……………..40
3.4 Generation of High -Order Quadrature/Arbitrary-Phase-Shift Oscillators..42
3.4.1 Generation of High-Order Quadrature Oscillators……………………..43
3.4.2 Generation of High-Order Arbitrary-Phase-Shift Oscillators………….49
3.5 Stability of High-Order Arbitrary-Phase-Shift Oscillators…………………..59
3.6 Arbitrary Phase Shift Operations…………………………………………….62
3.7 Validating Simulations……………………………………………………….64
3.8 A Pratical Application…………………………………...……………….…...78
3.9 Concluding remarks………………………………………………………….80

Chapter 4 Compensation Scheme for Phase Shift Deviation…………….………81
4.1 Compensation Scheme for Phase Shift Deviation………………………..81
4.2 Validating Simulations…………………………………………………90
4.3 Validating Experiment………………………………………………..……99
4.4 Concluding Remarks …………………………………………..………....103

Chapter 5 Native Amplitude Limiting Control.…………….…….........….…......104
5.1 Native Amplitude Limiting Control……………………………………….104
5.2 Validating Simulations…………………………………………………113
5.3 Concluding Remarks………………………………………………………..123

Chapter 6 Conclusions..............................…………………........................……...125

References………………………………………………………………………...129
Appendix 1……………………………………………...………………………….134
Appendix 2...............................................................................................................139


[1] Accioly, A. G. H., Sicard, P., Chériti, A., Bradaschia, F., “Input current control of power converters for poly-phase generation: a generalized approach”, in Proc. IEEE Brazilian Power Electronics Conference, COBEP’09, Bonito, Brazil, pp. 756-762, Sep. 2009.
[2] Radwan, A. G., Elwakil, A. S., and Soliman, A. M., “Fractional-order sinusoidal oscillators: design procedure and practical examples”, IEEE Trans. Circuits & Syst.-I, vol. 55, no. 7, pp. 2051-2063, Aug. 2008.
[3] Nakagawa, M., and Sorimachi, K., “Basic characteristics of a fractance device”, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E75, no. 12, pp. 1814-1819, 1992.
[4] Sugi, M., Hirano, Y., Miura, Y. F., and Saito, K., “Simulation of fractal immittance by analog circuits: an approach to the optimized circuits”, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E82, no. 8, pp. 1627-1634, 1999.
[5] Odame, K. M., and Hasler, P., “An efficient oscillator design based on OTA
Nonlinearity,” in IEEE Proc. Int. Symp. on Circuits and Systems, pp. 921-924, 2007.
[6] Odame, K. M., and Hasler, P., “Theory and design of OTA-C oscillators with native amplitude limiting”, IEEE Trans. Circuits & Syst.-I, vol. 51, no. 1, pp. 40-50, Jan. 2009.
[7] Schaumann, R., and Van Valkenburg, M. E., Design of Analog Filters, Oxford University Press, Inc., Oxford, 2001
[8] Szczepanski, S., Wyszznski, A., and Schaumann, “Highly linear voltage-controlled CMOS transconductors”, IEEE Trans. Circuits & Syst.-I, vol. 40, no. 4, pp. 258-262, April 1993.
[9] Smith, K. C., and Sedra, A., “The current conveyor-a new circuit building block”, IEEE Proc., vol. 56, no. 8, pp. 1368-1369, 1968.
[10] Smith, K. C., and Sedra, A., “A second-generation current conveyor and its applications”, IEEE Trans. Circuit Theory, vol. 17, no. 1, pp. 132-134, 1970.
[11] Fabre, A., Saaid, O., Wiest, F., and Boucheron, C., “High frequency applications based on a new current controlled conveyor”, IEEE Trans. Circuits & Syst.-I, vol.43, no. 2, pp. 82-91, Feb. 1996.
[12] Abuelma’atti, M. T., and Almaskati, R. H., “Digitally Programmable Active-C OTA-Based Oscillator”, IEEE Trans. Instrumentation and Measurement, vol. 37, no. 2, pp. 320-322, 1988.
[13] Senani, R., “New electronically tunable OTA-C sinusoidal osillator”, Electron. Lett., vol. 25, no. 4, pp. 286-287, 1989.
[14] Linares-Barranco, B.; Rodriguez-Vazquez, A.; Sanchez-Sinencio, E.; Huertas, J.L., “10MHz CMOS OTA-C voltage-controlled quadrature oscillator”, Electron. Lett., vol. 25, no. 12, pp. 765-767, 1989.
[15] Abuelma''atti, M.T., “New minimum component electronically tunable OTA-C sinusoidal scillators”, Electron. Lett., vol. 25, no. 17, pp. 1114-1115, 1989.
[16] Senani, R., Kumar, B.A., Tripathi, M.P., “Systematic generation of OTA-C sinusoidal oscillators”, Electron. Lett., vol. 26, no. 18, pp. 1457-1459, 1990.
[17] Abuelma’atti, M. T., “A new minimum component active-C OTA-based linear voltage (current)-controlled sinusoidal oscillator”, IEEE Trans. Instrumentation and Measurement, vol. 39, no. 5, pp. 795-797, 1990.
[18] Rodriguez-Vazquez, A., Linares-Barranco, B., Huertas, J.L., Sanchez-Sinencio, E., “On the design of voltage controlled sinusoidal oscillators using OTAs”, IEEE Trans. Circuits & Syst., vol. 37, no. 2, pp. 198-211, 1990.
[19] Linares-Barranco, B., Rodriguez-Vazquez, A., Sanchez-Sinencio, E., and Huertas, J. L., “CMOS OTA-C high-frequency sinusoidal oscillators”, IEEE J. Solid-State Circuits, vol. 26, no. 2, pp.160-165, Feb. 1991.
[20] Linares-Barranco, B., Rodriguez-Vbquez, A., SanchezSinencio, E., and Huertas, J. L., “Generation, design and tuning of OTA-C high-frequency sinusoidal oscillators”, IEE Proc.-G, Circuits Devices Syst., vol. 139, no. 5, pp. 557-568, 1992.
[21] Hou, C. L., Hwang, J., Wu, J. S., Lin, H. C., “OTA-based even-phase sinusoidal oscillators”, in Proc. of 20th Int. Conf. on Microelectronics (MIEC95), vol. 2, pp. 743-746, Nis Serbia, 12-14 Sep. 1995.
[22] Serrano-Gotarredona, T., and Linares-Barranco, B., “7-decade tuning range CMOS OTA-C sinusoidal VCO”, Electron. Lett., vol. 34, no. 17, pp. 1621-1622, 1998.
[23] Tao, Y., and Fidler, J. K., “Electronically tunable dual-OTA second-order sinusoidal oscillators/filters with non-Interacting controls: a systematic synthesis approach”, IEEE Trans. Circuits & Syst.-I, vol. 47, no. 2, pp. 117-129, 2000.
[24] Prommee, P., and Dejhan, K., “An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifer”, Int. J. Electron., vol. 89, no. 5, pp. 365-379, 2002.
[25] Swamy, M. N. S., Raut, R., and Tang, Z., “Generation of new OTA-C oscillator structures using network transposition”, in IEEE Proc. Int. Midwest Symp. on Circuits and Systems, vol. I, pp. 73-76, 2004
[26] Linares-Barranco, B., Serrano-Gotarredona, T., Ramos-Martos, J., Ceballos-Cáceres, J., Miguel Mora, J., and Linares-Barranco, A., “A precise 90 quadrature OTA-C oscillator tunable in the 50–130-MHz range”, IEEE Trans. Circuits & Syst.-I, vol. 51, no. 4, pp. 649-663, April 2004.
[27] Galan, J., Carvajal, R. G., Torralba, A., Muñoz, F., and Ramirez-Angulo, J., “A low-power low-voltage OTA-C sinusoidal oscillator with a large tuning range”, IEEE Trans. Circuits & syst.-I, vol. 52, no. 2, pp. 283-291, Feb. 2005.
[28] Singh, V., “Equivalent forms of dual-OTA RC oscillators with application to grounded-capacitor oscillators’, IEE Proc.-G, Circuits Devices Syst., vol. 153, no. 2, pp. 95-99, April 2006.
[29] Herencsar, N., Lahiri, A., Koton, J., and Vrba, K., “VM and CM quadrature sinusoidal oscillators using commercially available active devices”, in Int. Conf. on Applied Electronics, pp. 1-4, 2010.
[30] Singh, V., “Equivalent forms of single OTA RC oscillators with application to ground capacitor oscillators”, IET Proc-G, circuits Devices Syst., vol. 4, no. 2, pp. 123-130, 2010.
[31] Kumngern, M., and Junnapiya, S., “Current-Mode Third-Order Quadrature Oscillator Using Minimum Elements’, in Int. Conf. on Electrical Engineering and Informatics, Bandung, Indonesia, pp. 1-4, 17-19 July 2011.
[32] Nandi, R., “Precise insensitive tunable RC-oscillator realisation using current conveyors”, IEE Proc-G, Electronic Circuits Syst., vol. 133, no. 3, pp. 129-132, 1986.
[33] Abuelma''atti, M. T., “Two minimum component CCII-based RC oscillators”, IEEE Trans. Circuits & Syst., vol. 34, no. 8,, pp. 980-981, 1987.
[34] Abuelma''atti, M. T., and Humwu, N. A., “Current-conveyor sinewave oscillators”, Electronics & Wireless World, vol. 94, pp. 282-284, March 1988.
[35] Chen, J. J., Chen, C. C., Tsao, H. W., and Liu, S. I., “Current-mode oscillators using single current follower”, Electron. Lett., vol. 27, no. 22, pp. 3056-2059, 1991.
[36] Celma, S., Martinez, P. A., and Carlosena, A., “Minimal realization for single resistor controlled sinusoidal oscillator using single CCII”, Electron. Lett., vol. 28, no. 5, pp. 443-444, 1992.
[37] Celma, S., Martinez, P. A., and Carlosena, A., “Approach to the synthesis of canonic RC-active oscillators using CCll”, IEE Proc.-Circuits Devices Syst., vol. 141, no. 6, pp. 493-497, Dec. 1994.
[38] Chang, C. M., “Novel current-conveyor-based singleresistance-controlled/ voltage-controlled oscillator employing grounded resistors and capacitors”, Electron. Lett., vol. 30, no. 3, pp. 181-183, 1994.
[39] Kiranon, W., Kesorn, J., Wardkein, P., “Current controlled oscillator based on translinear conveyors”, Electron. Lett., vol. 32, no. 15, pp. 1330-1331, 1996.
[40] Weng, R. M., Lin, C. L., and Lee, M. H., “A Class of two-current-conveyor- based oscillators employing minimum grounded passive elements”, in IEEE Asia- Pacific Conf. on Circuits and Systems, TT13-2, pp. 267-269, 1998.
[41] Abuelma''atti, M. T., Al-Qahtani, M. A., “A New Current-Controlled Multiphase Sinusoidal Oscillator Using Translinear Current Conveyors”, IEEE Trans Circuits & Syst.-II, vol. 45, no. 7, pp. 881-885, 1998.
[42] Martinez, P. A., Sabadell, J., Aldea, C., and Celma, S., “Variable frequency sinusoidal oscillators based on CCII+”, IEEE Trans. Circuits & Syst.-I, vol. 46, no. 11, pp. 1386-1390, 1999.
[43] Chang, C. M., Al-Hashimi, B. M., Chen, H. P., Tu, S. H., and Wan, J. A., “Current mode single resistance controlled oscillators using only grounded passive components”, Electron. Lett., vol. 38, no. 19, pp. 1071-1072, 2002.
[44] Barthelemy, H., Giuseppe Ferri, G., and Guerrini, N., “A 1.5 V CCII-based tunable oscillator for portable industrial applications”, in IEEE Proc. Int. Symp. on Industrial Electronics, vol. 4, pp. 1341-1345, 2002.
[45] Khan, A. A., Bimal, S., Dey, K. K., and Roy, S. S., “Novel RC sinusoidal oscillator using second-generation current conveyor”, IEEE Trans. Instrumentation and Measurement, vol. 54, no. 6, pp. 2402-2406, 2005.
[46] Maheshwari, S., Khan, I.A., “Current controlled third order quadrature oscillator”, IEE Proc.-G, Circuits Devices Syst., vol. 152, no. 6, pp. 605-607, 2005.
[47] Horng, J. W., Hou, C. L., Chang, C. M., Chung, W. Y., Tang, H. W., and Wen, Y. H., “Quadrature oscillators using CCIIs”, Int. J. Electron., vol. 92, no. 1, pp. 21-31, Jan. 2005.
[48] Salem, S. B., Sellami Masmoudi, D., Fakhfakh, M., Loulou, M., and Masmoudi, N., “High frequency CCII based oscillators and multifunction filters”, in Int. Conf. on Design and Test of Integrated Systems in Nanoscale Technology, pp. 141-144, 2006.
[49] Xi, Y. H., Liu, Q., and Li, H., “Design of multiphase sinusoidal oscillator based on CCCII”, in The Sixth World Congress on Intelligent Control and Automation, vol. 1, pp. 4960-4962, 2006.
[50] Prommee, P., Somdunyakanok, M., and Angkeaw, K., “CCCII-based multiphase sinusoidal oscillator employing highpass sections”, in The 6th Int. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, vol. 1, pp. 530-533, 2009.
[51] Minhaj, N., “Multioutput current-controlled current conveyor based function generator”, in Int. Conf. on Advances in Computing, Control, & Telecommunication Technologies, pp. 424-427, 2009.
[52] Kumngern, M.; Junnapiya, S., “A sinusoidal oscillator using translinear current conveyors”, in IEEE Asia Pacific Conf. on Circuits and Systems, pp. 740-743, 2010.
[53] Moradzadeh, H., and Azhari, S. J., “Low-voltage low-power rail-to-rail low-Rx wideband second generation current conveyor and a single resistance- controlled oscillator based on it”, IET Proc.-G, Circuits Devices Syst., vol. 5, no. 1, pp. 66-72, 2011.
[54] Yesil, A., Kacar, F. and Kuntman, H., “New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application”, Radio Engineering, vol. 20, no. 3, pp. 632-637, September 2011.
[55] Chang, C. M., and Swamy, M. N. S., “Analytical synthesis and comparison of voltage-mode nth-order OTA-C universal filter structure”, Int. J. Circ. Theor. Appl., vol. 40, no. 5, pp. 405-438, May 2012.
[56] Yamaji, T., Tanimoto, H., Matsuno, J., and Itakura, T., “Harmonic signal rejection schemes of poly-phase down-converters”, IEEE Trans. Circuits & Syst.-I, vol. 58, no. 10, pp. 2308-2317, 2011.
[57] Chou, C. Y., and Wu, C. Y., “The design of wideband and low-power CMOS active poly-phase filter and its application in RF double-quadrature”, IEEE Trans. Circuits & Syst.-I, vol. 52, no. 5, pp. 825-833, 2005.
[58] Sun, Y., and Fidler, J. K., “Synthesis and performance analysis of universal minimum component integrator-based IFLF OTA-grounded capacitor filter”, IEE Proc.-G, Circuits Devices Syst., vol. 143, no. 2, pp. 107-114, 1996.
[59] Lyon, R. F., and Mead, C., “An analog electronic cochlea”, IEEE Trans. Acoust., Speech Signal Process., vol. 36, no. 7, pp. 1119–1134, Jul. 1988.
[60] Enz, C. C., Krummenacher, F., and Vittoz, E. A., “An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications”, Analog Integr. Circuits Signal Process., vol. 8, no. 1, pp. 83–114, Jul. 1995.
[61] Mitchell, T. M., Machine Learning, Chap. 4, pp. 96-97, WCB-McGraw-Hill, 1997.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top