跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 02:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭文君
研究生(外文):Wen-Chun Peng
論文名稱:車用行動通訊網路中IP位址交換策略
論文名稱(外文):IP Address Exchanging Strategy for VANET
指導教授:段裘慶段裘慶引用關係
指導教授(外文):Chiu-Ching Tung
口試委員:辛華昀陳彥文
口試日期:2012-01-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:88
中文關鍵詞:車用行動通訊網路IP位址分配IP位址交換DHCP位址分配機制
外文關鍵詞:Vehicular Ad Hoc NetworkIP Address ConfigurationIP Address ExchangeDHCP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
車用行動通訊網路是由配有車載機的智慧型車輛與路邊設備所形成的移動式隨意網路,其通訊類別可分為車間通訊與行車對路邊設備通訊。路邊設備具有無線網路存取點的功能,車輛可以直接或透過其它車輛以多點跳躍的方式與路邊設備通訊,經由後端骨幹網路連接上網際網路,透過與網際網路的連接,人們於車輛行駛中,即可取得許多便利性的服務。
在網際網路中,IP位址被用於定址與建立路由。因此,於車用行動通訊網路中,車輛擁有一個唯一的IP位址為實現行車上網的必要條件。集中式DHCP位址分配機制相較於分散式位址分配機制,雖可確保大範圍內車輛取得IP位址之唯一性,但由於IPv4位址不足,車輛取得之IP位址並無法使用於不同的服務區域。除此之外,在車輛透過DHCP程序取得IP位址的過程中,重複位址偵測動作是一個耗時的程序,將會減少車輛存取網路之有效通訊時間。
有鑑於此,本研究以集中式DHCP位址分配機制為基礎,提出採用IP位址交換策略之IP位址交換式位址分配機制(IPX),藉由服務區域範圍之界定,排除車輛取得IP位址發生無效或衝突之情況,並避免耗盡DHCP伺服器管理之有效IP位址數;除此之外,在車輛經由移動偵測得知即將離開現有服務區域時,可與即將進入服務區域車輛進行IP位址交換,避免DHCP程序中耗時之重複位址偵測動作,加快車輛取得IP位址,以提升車用行動通訊網路有效服務時間。
從模擬實驗結果顯示,本研究所提出之IPX機制可以有效地減少IP位址平均配置時間與DHCP伺服器負載;相較於CAC機制,在低車流量時,IPX機制之IP位址平均配置時間減少6.7%以上,高車流量時,則減少11.5%以上。以DHCP伺服器負載改善率而言,在低車流量時IPX機制相較於CAC機制改善6.2%以上,高車流量時,則至少改善12.9%。

A Vehicular Ad Hoc Network (VANET) is a specialized form of Mobile Ad Hoc Network (MANET), it consists of smart vehicles on the road and provides Inter-Vehicle Communication (IVC) and Roadside-to-Vehicle Communication (RVC). In VANET, roadside units are equipped with access point (AP) and are connected to the Internet via back-bone wired networks. Vehicles can either utilize multi-hop relaying through neighboring vehicles or communicate directly with roadside units to access the Internet, and obtain a variety of convenient services.
For the Internet applications, IP addresses are used as the host identifiers and build the routing information. Therefore, vehicles in VANET require possessing a unique IP address to access the Internet. Compared with distributed address configuration scheme, Centralized Address Configuaration (CAC) scheme using DHCP can assign a unique IP address to vehicles in a large area. However, due to short of available IPv4 addresses, the usages of IP addresses assigned by centralized scheme need to be restricted to the existing service region. Furthermore, duplicate address detection (DAD) process in DCHP transaction is a time-consuming process, it will greatly reduce vehicle’s available network connection time.
In this study, IP address exchanging strategy was proposed to solve the aforementioned problem. By delimiting the IP address service region, IP Address Configuration Scheme using IP Address Exchange (IPX) will prevent the vehicles from using invalid IP addresses outside the corresponding service region, and also avoid the IP address exhaustion of the centralized DHCP server. Besides, through movement detection, vehicles leaving the service region will try to exchange the owned IP addresses with the IP addresses of vehicles entering the service region. As a result, IPX could eliminate the DAD process in DHCP transaction, reduce the overhead of acquiring an IP address and improve the network connectivity effectively.
The simulation results show that our proposed IPX scheme could reduce the average vhehicle address configuration time and DHCP server network load. Compared aginst CAC, IPX reduces the average vehicle address configuration time by at least 6.7% for low traffic conditions, and reduces by at least 11.5% for high traffic conditions. In terms of DHCP server load improvement rate, IPX improves by at least 6.2% for low traffic conditions, and improves by at least 12.9% for high traffic conditions.

中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究動機 2
1.2 研究目的 3
1.3 論文架構 3
第二章 文獻探討 4
2.1 MANET簡介 4
2.1.1 MANET特性 7
2.1.2 MANET路由協定 8
2.2 VANET簡介 9
2.2.1 VANET與MANET特性之比較 10
2.3 動態IP位址分配 12
2.3.1 動態主機設定協定運作流程 12
2.3.2 重複位址偵測程序 13
2.3.3 IP位址租賃時間 14
2.4 私有IP位址 15
2.5 網路位址轉換機制 16
2.6 位址解析協定 19
2.7 VANET IP位址分配機制 22
2.7.1 分散式IP位址分配 22
2.7.2 集中式IP位址分配 24
2.7.3 IP位址轉移 26
第三章 IP位址交換式位址分配機制 29
3.1 服務區域範圍之界定 30
3.1.1 界定服務區域範圍之必要性 30
3.1.2 出口道路 32
3.1.3 路邊設備之佈署與類別 33
3.1.4 界定服務區域範圍之方法 35
3.2 移動偵測 39
3.2.1 移動偵測步驟 40
3.3 IP位址交換 44
3.3.1 GARP封包 44
3.3.2 IP位址交換程序 45
第四章 效能模擬與分析 49
4.1 模擬環境與模擬參數 49
4.2 模擬程式規劃與建立 52
4.3 效能評估因子 53
4.3.1 IP位址平均配置時間 53
4.3.2 IP位址交換成功率 54
4.3.3 負載改善率 54
4.4 模擬結果與分析 55
4.4.1 IP位址平均配置時間之效能模擬分析 56
4.4.2 IPX機制IP位址平均配置時間之效能模擬分析 59
4.4.3 IP位址交換成功率之效能模擬分析 63
4.4.4 負載改善率之效能模擬分析 66
第五章 結論以及未來工作 69
5.1 結論 69
5.2 未來工作 70
參考文獻 71
附錄
A 中英文專有名詞對照表 75
B 模擬程式簡介 82
C 作者簡歷 87

[1]Dedicated Short Range Communication (DSRC) Home, [Online] http://www.leearmstrong.com/DSRC/DSRCHomeset.htm.
[2]Car2Car Communication Consortium, [Online] http://www.car-to-car.org.
[3]Cooperative Vehicles and Infrastructure Systems, [Online] http://www.cvisproject.org.
[4]R. Kruger, H. Fuler, M. Torrent-Moreno, M. Transier, H. Hartenstein, and W. Effelsberg, “Statistical Analysis of the FleetNet Highway Movement Patterns,” Germany, Tech. Rep. TR-2005-004, Jul. 2005.
[5]K. Yasuto, “DSRC Standards for Multiple Applications,” in Proc. of 11th World Congress on ITS, Nagoya, Japan, Oct. 2004.
[6]Intelligent Transport Society of Taiwan, [Online] http://www.its-taiwan.org.tw.
[7]A. Nandan, S. Das, G. Pau, M. Sanadidi, and M. Gerla, “Co-operative downloading in Vehicular Ad-hoc Networks,” in Proc. of Second Annual Conference on Wireless On-demand Network Systems and Services, St. Moritz, Switzerland, pp. 32-41, Jan. 2005.
[8]C. E. Perkins and E. M. Royer, “Ad-Hoc On-Demand Distance Vector Routing,” in Proc. of 2nd IEEE Workshop on Mobile Computing Systems and Applications, pp. 90-100, Feb. 1999.
[9]T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, N. Kato, and Y. Nemoto, “A Stable Routing Protocol to Support ITS Services in VANET Networks,” IEEE Trans. Vehicular Technology, vol. 56, no. 6, pp. 3337-3347, Nov. 2007.
[10] Wi-Fi Alliance, [Online] http://www.wi-fi.org.
[11] M. S. Gast, 8021.11 Wireless Networks: The Definite Guide, Second Edition, O’Reilly, pp. 14-19, Apr. 2005.
[12] R. Chadha and L. Kant, Policy-Driven Mobile Ad hoc Network Management, Wiley-IEEE Press, pp. 8-9, Dec. 2007.
[13] 曾煜棋、潘孟鉉與林致宇,無線區域及個人網路-隨意及感測網路之技術與應用,台北:加樺國際股份有限公司,2006,第8-4頁。
[14] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,” in Proc. of the Conference on Communications Architectures, Protocols and Applications, United Kingdom, pp. 234-244, Aug. 1994.
[15] T. Clausen and P. Jacquet, “OLSR Optimized Link State Routing Protocol (OLSR),” IETF RFC 3626, Oct. 2003.
[16] D. Johnson, Y. Hu, and D. Maltz, “The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4,” IETF RFC 4728, Feb. 2007.
[17] Z. J. Haas, “A New Routing Protocol for the Reconfigurable Wireless Networks,” in Proc. of IEEE 6th International Conference on Universal Personal Communication, San Diego, USA, vol. 2, pp. 562-566, Oct. 1997.
[18] “Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems - 5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” ASTM DSRC STD E2213-03, 2003.
[19] “IEEE P802.11p/D6, Draft Amendment for Wireless Access in Vehicular Environments (WAVE),” Mar. 2009.
[20] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular Environments,” in Proc. of the Vehicular Technology Conference, Singapore, pp. 2036-2040, May 2008.
[21] R. Droms, “Dynamic Host Configuration Protocol,” IETF RFC 2131, Mar. 1997.
[22] S. Cheshire, “IPv4 Address Conflict Detection,” IETF RFC 5227, Jul. 2008.
[23] Wireshark Network Protocol Analyzer, [Online] http://www.wireshark.org.
[24] Y. Rekhte, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear, “Address Allocation for Private Internets,” IETF RFC 1918, Feb. 1996.
[25] P. Srisuresh and K. Egevang, “Traditional IP Network Address Translator (Traditional NAT),” IETF RFC 3022, Jan. 2001.
[26] M. Fazio, C. E. Palazzi, S. Das, and M. Gerla, and D. Matematica, “Facilitating Real-time Applications in VANETs Through Fast Address Auto-Configuration,” in Proc. of the 4th IEEE Consumer Communications and Networking Conference, Las Vegas, USA, pp. 981-985, Jan. 2007.
[27] B. K. Mohandas and R. Liscano, “IP Address Configuration in VANET using Centralized DHCP,” in Proc. of 33th IEEE Conference on Local Computer Networks, Montreal, pp. 608-613, Oct. 14-17, 2008.
[28] T. Arnold, W. Lloyd, J. Zhao, and G. Cao, “IP Address Passing for VANETs,” in Proc. of 6¬th IEEE Conference on Pervasive Computing and Communications, Hong Kong, pp. 70-79, Mar. 2008.
[29] Gratuitous ARP, [Online] http://wiki.wireshark.org/Gratuitous_ARP.
[30] W. R. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, pp. 62-63, 1994.
[31] “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std. 802.11, 2007.
[32] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic Configuration of IPv4 Link-Local Addresses,” IETF RFC 3927, May 2005.
[33] OMNeT++ Network Simulation Framework, [Online] http://www.omnet.org.
[34] Microsoft Knowledge Base, DHCP (Dynamic Host Configuration Protocol) Basics, [Online] http://support.microsoft.com/kb/169289, Feb. 2007.
[35] R. Sedgewick and K. Wayne, Algorithms, Forth Edition, Addison-Wesley, pp. 518-556, Mar. 2011.
[36] INET Framework, [Online] http://inet.omnetpp.org.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top