跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊國廷
研究生(外文):Kuo-Ting Yang
論文名稱:具有過電流保護之低電壓鋰電池充電器與直流-直流降壓轉換器設計
論文名稱(外文):The Design of Low-Voltage Li-Ion Battery Charger and DC-DC Buck Converter with Over Current Protection
指導教授:陳建中陳建中引用關係黃育賢
指導教授(外文):Jiann-Jong ChenYuh-Shyan Hwang
口試委員:李文達郭建宏
口試委員(外文):Wen-Ta LeeChien-Hung Kuo
口試日期:2012-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:鋰電池充電器平均電流控制磁滯電流控制過電流保護
外文關鍵詞:Li-Ion chargeraverage-current-controlledhysteresis-current-controlledover current protection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:522
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文第一部分為使用平均電流控制技術之低電壓鋰電池充電器,採用多模充電對鋰電池充電,其操作電壓為1.5V。充電模式分別為涓流模式、定電流模式以及定電壓模式。使用平均電流控制技術不僅防止次諧波震盪發生,還能減少電路的複雜度。當工作週期超過50%依然可以正常工作,不會產生不穩定的現象。當鋰電池發生短路時,驅動電路將啟動短路保護停止對鋰電池充電。本電路使用台灣積體電路公司零點三五微米兩層多晶矽四層金屬互補式金屬氧化物半導體製程來實現,晶片面積為 2.46 x 2.68mm2 (包含PADs)。
論文第二部分為具有過電流保護之高效率磁滯電流控制直流-直流降壓轉換器,架構分為功率電晶體、主動式電流感測、取樣保持電路、磁滯電流比較電路、補償網路、非重疊與驅動電路、與過電流保護。電源管理IC的輸出電流如果過大,將使功率電晶體溫度上昇,進而造成功率電晶體燒毀。本論文在降壓轉換器加上過電流保護,過電流保護設定在650mA,達到保護作用使電源管理IC壽命延長。模擬結果顯示為輸入電壓範圍2.5V到4.2V時,輸出電壓為1.8V;在輸入電壓2.5V且負載電流150mA有最高效率93.2%。本電路使用台灣積體電路公司零點三五微米兩層多晶矽四層金屬互補式金屬氧化物半導體製程來實現,晶片面積為 1.5 x 1.5mm2 (包含PADs)。


The first part of this thesis presents a low-voltage Li-Ion battery charger which uses multimode with 1.5V supply voltage by using average-current-controlled technique. The proposed charger is operated for trickle current mode, constant current mode, and constant voltage mode, respectively. Using average-current-controlled technique not only prevents sub-harmonic oscillation but also reduces the circuit design complexity. When duty cycle is over 50%, the system still works properly, and does not produce an unstable phenomenon. If the Li-Ion battery occurs short, the driving circuit will enable the short circuit protection to stop charging battery. The low-voltage high-efficiency Li-Ion battery charger using average-current-controlled technique is implemented with TSMC 0.35μm 2P4M CMOS process, and the chip area is 2.46 x 2.68 mm2 (with PADs).
The second part of this thesis presents a high-efficiency hysteresis-current- controlled DC-DC buck converter with over current protection. The buck converter consists of two power transistors, active-current-sensing circuit, sample and hold circuit, hysteresis-current comparator circuit, compensator network, non-overlapping and driving circuit, and over current protection circuit. Generally speaking, the output current of the power management IC exceeds the current limit value will rise the temperature of power transistor, and then causes the power transistor breakdown. In this thesis, the buck converter is limited the ouput current below 650mA by using over current protection for achieving the protective effect and extending the power management IC life cycle. The simulation results show the output voltage is 1.8V when the supply voltage range is 2.5~4.2V. The maximum efficiency is 93.2% when load current is 150mA and supply voltage is 2.5V. The high-efficiency hysteresis-current- controlled DC-DC buck converter with over current protection is implemented with TSMC 0.35μm 2P4M CMOS process, and the chip area is 1.5 x 1.5 mm2.


目錄
摘要 i
ABSTRACT ii
誌謝 iv
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 相關研究發展近況 1
1.2 研究動機與目的 3
1.3 論文內容架構 8
第二章 直流-直流轉換器介紹 9
2.1 切換式降壓轉換器操作原理 9
2.1.1 切換式降壓轉換器之連續導通模式 10
2.1.2 切換式降壓轉換器之不連續導通模式 14
2.1.3 切換式降壓轉換器之邊界條件 16
2.2 直流直流轉換器之規格 18
2.2.1 輸出電壓漣波 18
2.2.2 暫態響應 18
2.2.3 線性調節率 19
2.2.4 負載調節率 20
2.2.5 效率 20
第三章 使用平均電流控制技術之低電壓鋰電池充電器 22
3.1 鋰電池充電方式 22
3.1.1 定電壓模式 22
3.1.2 定電流模式 23
3.1.3 定電流/定電壓模式 23
3.1.4 脈波充電 24
3.2 返馳式轉換器介紹 25
3.2.1 變壓器原理 25
3.2.2 返馳式轉換器之穩態分析 28
3.3 架構簡介 32
3.3.1 鋰電池充電流程圖 34
3.3.2 模式選擇器 34
3.3.3 低電壓誤差放大器 36
3.3.4 主動式電流感測電路與零電流偵測 41
3.3.5 參考電流產生器 43
3.3.6 定電流補償與定電壓補償 44
3.3.7 平均電流控制電路 46
3.3.8 斜波產生器 47
3.3.9 非重疊電路 48
3.3.10 驅動電路與短路保護 50
3.4 電路模擬結果 52
3.5 電路佈局與實測結果 54
3.5.1 電路佈局圖 54
3.5.2 晶片腳位與功能定義 55
3.5.3 量測環境 59
3.5.4 量測結果 62
3.5.5 規格表與文獻比較表 64
第四章 具有過電流保護之高效率磁滯電流控制直流-直流降壓轉換器 66
4.1 架構簡介 66
4.1.1 補償網路 67
4.1.2 主動式電流感測電路 72
4.1.3 取樣保持電路 75
4.1.4 磁滯電流比較電路 76
4.1.5 電流比較器 77
4.1.6 過電流保護電路 78
4.1.7 非重疊與驅動電路 79
4.2 電路模擬結果 81
4.3 電路佈局與實測結果 85
4.3.1 電路佈局圖 85
4.4.2 晶片腳位與功能定義 87
4.4.3 量測環境 90
4.4.4 規格表與文獻比較表 92
第五章 結論與未來展望 94
5.1 結論 94
5.2 未來展望 95
參考文獻 96


[1] Y. S. Hwang, M. S. Lin, B. H. Hwang, and J. J. Chen, “A 0.35μm CMOS sub-1V low-quiescent-current low-dropout regulator,” in Proc. Asian Solid-State Circuits Conference, Nov. 2008, pp. 153-156.
[2] J. J. Chen, “An active current-sensing constant-frequency HCC buck converter using phase-frequency-locked techniques,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 55, no. 4, pp. 761-769, Apr. 2008.
[3] 孫清華,最新可充電電池技術大全,全華科技圖書,2003。
[4] S.-H. Jung, Y.-J. Woo, N.-I. Kim, and G.-H. Cho, “Analog-digital switching mixed mode low ripple-high efficiency Li-Ion battery charger,” in IEEE Thirty-Sixth Industry Applications Conference, vol. 4, 30 Sept.-4 Oct. 2001, pp. 2473-2477.
[5] V. L. Teofilo, L.V. Merritt, and R. P. Hollandsworth, “Advance Lithium ion battery charger,” IEEE Aerospace and Electronics Systems Magazine, vol. 12, no. 11, pp. 30-35, Nov. 1997.
[6] M. J. Isaacson, R. P. Hollandsworth, P. J. Giampaoli, F. A. Linkowsky, A. Salim, and V. L. Teofilo, “Advance Lithium ion battery charger,” in Proc. IEEE Fifteenth Annual Battery Conference on Applications and Advances, 2000, pp. 193-198.
[7] C. C. Tsai, C. Y. Lin, Y. S. Hwang, W. T. Lee, and T. Y. Lee, “A multi-mode LDO-Based Li-Ion battery charger in 0.35μm CMOS technology,” in Proc. IEEE Asia-Pacific Circuits and Systems, vol. 1, Dec. 2004, pp. 49-52.
[8] Y. S. Hwang, S. C. Wang, F. C. Yang, and J. J. Chen, “New compact CMOS Li-Ion battery charger using Charge-Pump technique for portable applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 4, pp. 705-712, Apr. 2007.
[9] Y. C. Chuang and Y. L. Ke, “A novel high-efficiency battery charger with a buck zero-voltage-switching resonant converter,” IEEE Trans. on Energy Conversion, vol. 22, no. 4, pp. 848-854, Dec. 2007.
[10] C. H. Lin, C. L. Chen, S. J. Wang, H. W. Huang, and K. H. Chen, “Fast Charging Technique for Li-Ion Battery Charger,” in the 15th IEEE International Conference on Electronics, Circuits and Systems, pp. 618-621, Sep. 2008.
[11] J. J. Chen, F. C. Yang, C. C Lai, Y. S. Hwang and R. G Lee, “A high-efficiency multimode Li-Ion battery charger with variable current source and controlling previous-stage supply voltage,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2469-2478, Jul. 2009.
[12] Panasonic, Lithium-Ion Coin Data Sheet, 2003.
[13] R. W. Erickson, Fundamental of Power Electronics, Norwell, MA, Kluwer Academic Punishers, 1999.
[14] C. Y. Hsieh, C. Y. Yang, and K. H. Chen, “A low-dropout regulator with smooth peak current control topology for overcurrent protection,” IEEE Trans. Power Electronics, vol. 25, no. 6, pp. 1386-1394, Jun. 2010.
[15] 粱適安,交換式電源供應器之理論與實務設計,全華書局,2008。
[16] R. C. Cope and Y. Podrazhansky, “The Art of Battery Charging, ” in Proc Battery Conference on Application and Advance, 1999, pp. 12-15.
[17] W. Yuan, X. C. Huang, J. M. Zhang and Z. M. Qian, “A Novel soft switching flyback converters with synchronous rectification,” in IEEE. Power Electronics and Motion Control Conf, May 2009, vol.2, pp. 551- 555.
[18] C. Zheng and D. Ma, “Design of monolithic CMOS LDO regulator with D2 coupling and adaptive transmission control for adaptive wireless powered Bio-Implants,” IEEE Trans. Circuits Syst I, Reg. Papers, vol. 58, no. 10, pp. 2377-2387, Oct. 2011.
[19] B. Nauta, “A CMOS transconductance-C filter technique for very high frequencies,” IEEE J. Solid-State Circuits, vol. 27, no. 2, pp. 142-153, Feb. 1992
[20] C. L. Chen, W. J. Lai, T. H. Liu, and K. H. Chen, “Zero current detection technique for fast transient response in buck DC-DC converters,” in Proc. IEEE International Symp. Circuits and Systems, May 2008, pp. 2214-2217.
[21] 楊豐誠,功率積體電路於直流-直流降壓轉換器與鋰離子電池充電器之設計及其應用,國立臺北科技大學,電腦與通訊研究所,博士論文,臺北,2008。
[22] R. Li, T. O''Brien, J. Lee, and J. Beecroft, “A unified small signal analysis of DC-DC converters with average current mode control,” in IEEE Energy Conversion Congress and Exposition, Sep. 2009, pp. 647-654.
[23] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC–DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[24] S. L. Chen and M. D. Ker, “A new schmitt trigger circuit in a 0.13-µm 1/2.5-V CMOS process to receive 3.3-V input signals,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 52, no. 7, pp. 361-365, Jul. 2005.
[25] 游傑安,低電壓返馳式轉換器與鋰電池充電器之設計,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2011。
[26] 陳志強,主動式電流感測電路之磁滯電流控制降壓/降升壓轉換器,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2006。
[27] 許瑞軒,具改善負載調節與快速態暫響應之直流-直流降壓轉換器設計,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2010。
[28] H. P. Forghani-zadeh and G. A. Rincón-Mora, “An accurate, continuous, and lossless self-learning CMOS current-sensing scheme for inductor-based DC-DC converters,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 665-679, Mar. 2007.
[29] Texas Instrument Inc. TPS62261 Data sheet, 2011.
[30] R. Pagano, M. Baker, and R. E. Radke, “A 0.18-μm monolithic Li-Ion battery charger for wireless devices based on partial current sensing and adaptive reference voltage,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1355-1368, Jun. 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊