跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張元柏
研究生(外文):Yuan-Bo Chang
論文名稱:使用脈波寬度調變技術之寬輸出範圍飛馳電容式降升壓轉換器研製
論文名稱(外文):Design and Implementation of Flying-Capacitor Buck-Boost Converter with Wide Output Range utilizing PWM Technique
指導教授:陳建中陳建中引用關係黃育賢
指導教授(外文):Jiann-Jong ChenYuh-Shyan Hwang
口試委員:宋國明郭建宏
口試委員(外文):Guo-Ming SungChien-Hung Kuo
口試日期:2012-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:111
中文關鍵詞:切換式電容轉換器降壓轉換器降升壓轉換器直流-直流轉換器脈波寬度調變快速暫態響應
外文關鍵詞:Switched-Capacitor ConverterBuck converterBuck-Boost ConverterDC-DC ConverterPulse-Width-ModulationFast Transient Response
相關次數:
  • 被引用被引用:6
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的第一個部份提出脈波寬度調變技術之寬輸出範圍飛馳電容式降升壓轉換器,以改善傳統型切換式電容轉換器之效率。此改良型轉換器兼具快速暫態響應和非脈動輸出電流特性,並能降低輸出電壓漣波和輸出電容的額定電流應力;當輸入電源電壓為3.3V,此轉換器可精確提供輸出電壓範圍從1V到4.5V,且最高切換頻率為1 MHz,量測最高效率為90%。電路使用台積電0.35-μm互補式金氧半製程來實現,晶片面積為2.308 × 2.24 mm2(包含封裝晶片接腳)。
本論文第二部份為虛擬電流技術之快速寬輸出飛馳電容式降升壓轉換器。此改良型架構以虛擬電流技術使降升轉換器在輕重載變化時,輸出能具有較快速的暫態響應。當輸入電源電壓為3.3V,此降升壓轉換器可精確提供輸出電壓範圍從1V到4.5V,切換頻率為1 MHz;實驗結果顯示當負載電流變化200 mA時暫態響應小於2 μs,最高效率為89.66%。電路使用台積電0.35-μm互補式金氧半製程來實現,晶片面積為1.5 × 1.5 mm2 (包含封裝晶片接腳)。


The first part of this thesis is a flying-capacitor buck-boost converter with wide output range has been proposed to improve efficiency of conventional switched-capacitor converter. The proposed converter has the properties of fast response and the non-pulsating output current, which can reduce both of output voltage ripple and current stress requirement of the output capacitor. The proposed structure utilized pulse-width-modulation technique. The proposed converter can supply an output voltage with wide range which is from 1.0V to 4.5V in high accuracy when supply voltage is 3.3V. The max switching frequency of the proposed converter is 1 MHz. Experimental results proved that the proposed scheme improves the power efficiency up to 90%. The proposed buck-boost converter has been fabricated with TSMC 0.35-μm CMOS 2P4M process, the total chip area is 2.308 × 2.24 mm2 (with PADs).
The second part of this thesis introduces the design of fast transient response flying-capacitor buck-boost converter with wide output range utilizing pseudo-current mode techniques. The proposed structure utilized pseudo-current mode technique to achieve fast transient response when load current changes between heavy load and light load. The switching frequency of the proposed buck-boost converter is 1 MHz for supply voltage is 3.3V and output range is from 1.0V to 4.5V. Experimental results prove that the proposed scheme improves the transient response is within 2 μs and the power efficiency up to 89.66%. The proposed buck-boost converter has been fabricated with TSMC 0.35-μm CMOS 2P4M process, the total chip area is about 1.5 × 1.5 mm2 (with PADs).


摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 相關研究與發展現況 1
1.2 研究動機與目的 5
1.3 論文內容架構 6
第二章 切換式直流-直流轉換器介紹與原理 7
2.1 切換式轉換器介紹與基本原理 7
2.1.1 飛馳電容式電荷幫浦轉換器操作原理 7
2.1.2 切換式降壓轉換器操作原理 11
2.1.3飛馳電容式降升壓轉換器操作原理 17
2.2 切換式直流-直流降壓轉換器各項效能與定義 25
2.2.1 輸出電壓漣波(Output Voltage Ripple) 25
2.2.2 效率(Efficiency) 25
2.2.3 暫態響應(Transient Response) 27
2.2.4 負載調節 (Load Regulation) 28
2.2.5 線性調節 (Line Regulation) 29
第三章 脈波寬度調變技術之新型寬輸出範圍飛馳電容式降升壓轉換器 30
3.1脈寬調變技術之飛馳電容式降升壓轉換器架構簡介 30
3.1.1補償器 31
3.1.2 脈寬調變器 33
3.1.3 定電流產生電路 34
3.1.4 鋸齒波產生器 34
3.1.5 非重疊時脈電路與驅動電路 36
3.1.6驅動電路 37
3.2 電路模擬 38
3.2.1 PSIM行為模擬 38
3.2.2 HSPICE模擬 41
3.3 整體電路佈局與實測結果 45
3.3.1 脈寬調變技術之寬輸出降升壓轉換器電路佈局圖 45
3.3.2 電路IP腳位與功能定義 46
3.3.3 量測環境 49
3.3.4 量測結果 51
3.3.5 規格表與文獻比較表 55
第四章 虛擬電流技術之快速寬輸出飛馳電容式降升壓轉換器 57
4.1虛擬電流技術之快速飛馳電容式降升壓轉換器架構簡介 57
4.1.1補償器 58
4.1.2 脈寬調變器 59
4.1.3 三角微分混合器 60
4.1.4 鋸齒波產生器 61
4.1.5 非重疊時脈電路與驅動電路 63
4.1.6驅動電路 64
4.2 電路模擬 65
4.2.1 PSIM行為模擬 65
4.2.2 HSPICE模擬 68
4.3 降升壓轉換器整體電路佈局與實測結果 72
4.3.1 虛擬電流技術之快速寬輸出飛馳電容式降升壓轉換器電路佈局圖 72
4.3.2 電路IP腳位與功能定義 73
4.3.3 量測環境 75
4.3.4 量測結果 76
4.3.5 規格表與文獻比較表 80
4.4虛擬電流技術之快速寬輸入/輸出範圍降壓轉換器架構簡介 82
4.5 降壓轉換器電路模擬 83
4.5.1 PSIM行為模擬 83
4.5.2 HSPICE模擬 86
4.6 降壓轉換器整體電路佈局與實測結果 90
4.6.1 改良型脈寬調變技術之快速降壓轉換器電路佈局圖 90
4.6.2 電路IP腳位與功能定義 91
4.6.3 量測環境 93
4.6.4 量測結果 94
4.6.5 規格表與文獻比較表 98
第五章 結論與未來展望 100
5.1 結論 100
5.2 未來展望 101
參考文獻 103
附錄A 107

[1]B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, 2001.
[2]C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.
[3]Y. S. Hwang, M. S. Lin, B. H. Hwang, and J. J. Chen, “A 0.35μm CMOS sub-1V low-quiescent-current low-dropout regulator,” in Proc. ASSCC 2008, Nov. 2008, pp. 153-156.
[4]P. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buck–boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buck–boost converter,” IEEE Trans. Power Electronics, vol. 25, no. 3, pp. 719-730, Mar. 2010.
[5]K. I. Hwu and Y. T. Yau,” A novel voltage-bucking/boosting Converter: KY buck-boost converter,” in Proc. IEEE ICIT, Apr. 2008. pp. 1-4.
[6]林明憲,低功率CMOS電壓調整器之研製,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2010。
[7]C. K. Tse, S. C. Wong, and M. H. L. Chow, “On lossless switched capacitor power converters,” IEEE Trans. Power Electronics, vol. 10, no.3, pp. 286–291, May 1995.
[8]Y. Ma, H. Wang, G. Chen, and F. Qu, “A novel method for smooth transition in step-up/step-down DC-DC converter,” in Proc. IEEE EDSSC, Jan. 2009, pp.95-98.
[9]K. D. T. Ngo and R. Webster, “Steady-state analysis and design of a switched-capacitor DC-DC converter,” in Proc. IEEE PESC, vol.30, pp.378–385 , Jan. 1992.
[10]Y. S. Hwang and H. C. Lin, “A new CMOS analog front-end for RFID tags,” IEEE Trans. Ind. Electronics, vol. 56, no. 7, pp. 2299-2307, Jul. 2009.
[11]C. K. Cheung, S. C. Tan, Y.M. Lai, and C.K. Tse, “A new visit to an old problem in switched-capacitor converters,” in Proc. IEEE ISCAS, Jun. 2010, pp. 3192 – 3195.
[12]粱適安 編著,交換式電源供應器之理論與實務設計,全華書局,2001。
[13]R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, Norwell, MA: Kluwer, 2001 2nd.
[14]K. I. Hwu and Y. T. Yau, “Two types of KY buck–boost converters,” IEEE Trans. Ind. Electronics, vol. 56, no. 8, pp. 2970-2980, Aug. 2009.
[15]楊豐誠,功率積體電路於直流-直流降壓轉換器與鋰離子電池充電器之設計及其應用,國立臺北科技大學,電腦與通訊研究所,博士論文,臺北,2008。
[16]Man Siu, P.K.T. Mok, Ka Nang Leung, Y.-H. Lam, and Wing-Hung Ki, “A voltage-mode PWM buck regulator with end-point prediction,” IEEE Trans. Circuits and Systems, vol. 53, no. 4, pp. 294-298, Apr. 2006.
[17]許瑞軒,具改善負載調節與快速暫態響應之直流-直流轉換器設計,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2010。
[18]C. Y. Leung, P.K.T. Mok, K. N. Leung, and M. Chan, “An integrated CMOS current-sensing circuit for low-voltage current-mode buck regulator,” IEEE Trans. Circuits and Systems II, Express Briefs, vol. 52, no. 7, pp. 394-397, Jul. 2005.
[19]A. Pizzutelli, A. Carrera, M. Ghioni, and S. Saggini, “Digital dead time auto-tuning for maximum efficiency operation of isolated DC-DC converters,” in Proc. IEEE PESC, Jun. 2006, pp. 839-845.
[20]盧銘祥,使用脈波寬度調變與遲滯電壓平方控制技術之1V以下直流-直流轉換器,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2010。
[21]P. Y. Wu, S. Y.S. Tsui, and P. K. T. Mok, “Area- and power-efficient monolithic buck converters with pseudo-type III compensation,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1446–1455, Aug. 2010.
[22]Y. H. Lee, W. W. Lai, W. Y. Pai, K. H. Chen, M. J. Du, and S. H. Cheng, “Reduction of Equivalent Series Inductor Effect in Constant On-Time Control DC-DC Converter without ESR Compensation,” in Proc. IEEE ISCAS, May 2011, pp.753-756.
[23]M. X. Lu, B. H. Hwang, J. J. Chen, and Y. S. Hwang, "A Sub-l V Voltage-Mode DC-DC Buck Converter Using PWM Control Technique", in Proc. IEEE EDSSC, Dec. 2010, pp. 1-4.
[24]S. L. Chen and M. D. Ker, “A new schmitt trigger circuit in a 0.13-μm 1/2.5-V CMOS process to receive 3.3-V input signals,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 52, no. 7, pp. 361-365, Jul. 2005.
[25]廖健棠,低功率前饋式互補金氧半導體史密特觸發電路,國立雲林科技大學,電子工程研究所,碩士論文,雲林,2008。
[26]W. Qiu, S. Mercer, Z. Liang, and G. Miller, “Driver deadtime control and its impact on system stability of synchronous buck voltage regulator,” IEEE Trans. on Power Electronics, vol. 23, no.1, pp. 163-171, Jan. 2008.
[27]K. Wang, L. Geng, and Q. Meng, “Efficiency improvement in buck-boost converter aimed at SOC utilization,” in Proc. IEEE ICIT, Apr. 2008, pp.1-5.
[28]H. W. Chang, W. H. Chang, and C. H. Tsai, “Integrated single-inductor buck-boost or boost-boost DC-DC converter with power-distributive control,” in Proc. IEEE PEDS, Nov. 2009, pp.1184-1187.
[29]B. Sahu and G. A. Rincón-Mora, “A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable applications,” IEEE Trans. on Power Electronics, vol. 19, no. 2, pp. 443-452, Mar. 2004.
[30]Y. H. Lee, S. J. Wang, Y. Y. Yang, K. L. Zheng, P. F. Chen, C. Y. Hsieh, and K. H. Chen, “A high efficiency and compact size 65nm power management module with 1.2V low-voltage PWM controller for UWB system application,” in IEEE ESSCIRC, Sep. 2009, pp. 272-275.
[31]S. J. Wang, Y. H. Lee, Y. C. Lai, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” in Proc. IEEE CICC, Sep. 2009, pp. 211-214.
[32]Y. Y. Mai and P. K. T. Mok, “A constant frequency output-ripplevoltage-based buck converter without using large ESR capacitor,” IEEE Trans. Circuits Syst. II, Exp. Brief, vol. 55, no. 8, pp. 748–752, Aug.2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top