跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊曜瑋
研究生(外文):Yao-Wei Yang
論文名稱:無線能量轉換之低損耗前端整流器研製
論文名稱(外文):Design and Implementation of Low-loss Front-end Rectifier for Wireless Energy Transfer
指導教授:黃育賢陳建中陳建中引用關係
指導教授(外文):Yuh-Shyan HwangJiann-Jong Chen
口試委員:李文達郭建宏
口試委員(外文):Wen-Ta LeeChien-Hung Kuo
口試日期:2012-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:射頻整流器降低逆損耗技術升壓型前端整流器電荷幫浦升壓轉換器不連續導通模式
外文關鍵詞:RF-DC rectifierreducing reverse loss techniqueboost-type front-end rectifiercharge pumpingboost converterdiscontinuous-conduction mode
相關次數:
  • 被引用被引用:2
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文,我們主要研究於前端整流器電路。本射頻整流器採用了降低逆損耗技術並應用於13.56 MHz頻帶之下,透過持續偵測在射頻整流器輸入與輸出的能量位階,進而控制開關導通與否予以降低逆向損耗,因此,與使用其他技術的射頻整流器比較之,此技術可以增進射頻整流器的功率轉換效率。本射頻整流器也可以使用電荷幫浦之技術,藉由疊接方式來提升電壓位準,所以本射頻整流器不僅適用於升壓型前端整流器,也可適用在幫浦型前端整流器。本提出的升壓型前端整流器由一射頻整流器以及一升壓轉換器組成,將射頻訊號轉換成直流訊號可提供能量給遙測系統使用,在此射頻整流器使用降低逆損耗技術,另在所提出的升壓轉換器的部分,電感電流被操作在不連續導通模式,並且,電感上殘餘能量被監測進而來調整主要開關的導通時間,經由上述方式來提升此升壓型前端整流器的效率。此使用降低逆損耗技術射頻整流器晶片與升壓型前端整流器晶片以台積電0.18 μm 1P6M製程來實現,晶片面積不包含PADs分別為0.324 × 0.404 mm2與0.205 × 0.266 mm2。

In this thesis, our main research is front-end rectifier circuit. The RF-DC rectifier adopts reducing reverse loss technique at 13.56 MHz band. Therefore, by continuously detecting the input and output power level to turn the switches on/off, the reverse loss is decreased. Comparing with others, the technique can improve power conversion efficiency of the RF-DC rectifier. The RF-DC rectifier can also use charge pumping technique which raises voltage level by stack method. Consequently, not only boost-type front-end rectifier but also pump-type front-end rectifier can adopt the proposed RF-DC rectifier. The proposed boost-type front-end rectifier is composed of a RF-DC rectifier and a boost converter. Transforming RF signal into DC signal provides power to wireless telemetry system. The proposed RF-DC rectifier uses the reducing reverse loss technique. In the proposed boost converter of the proposed circuit, the inductor current is operated in discontinuous-conduction mode. Moreover, turning on time of the principal switch is adjusted by the remnant energy of the inductor is monitored. The efficiency of the proposed boost-type front-end rectifier is enhanced by the foregoing methods. The chips of RF-DC rectifier with the reducing reverse loss technique and boost-type front-end rectifier are implemented with TSMC 0.18μm CMOS 1P6M process. The area of chips without PADs are 0.324 × 0.404 mm2 and 0.205 × 0.266 mm2, respectively.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 序論 1
1.1 相關研究與近況發展 1
1.2 研究動機與目的 4
1.3 論文架構 5
第二章 射頻前端電路介紹 6
2.1 射頻頻段的應用 6
2.2 無線遙測系統 9
2.2.1 幫浦型前端整流器 10
2.2.2 升壓型前端整流器 11
2.2.3 幫浦型前端整流器與升壓型前端整流器之比較 12
2.3 RF-DC整流器 13
2.3.1 功率轉換效率 13
2.3.2 RF-DC整流器發展近況 14
2.4 切換式直流-直流升壓轉換器 19
2.4.1 連續導通模式升壓轉換器 20
2.4.2 不連續導通模式升壓轉換器 24
2.4.3 效率 28
第三章 無線能量轉換之低損耗整流器使用降低逆損耗技術 29
3.1 傳統架構 29
3.1.1 二極體式整流器 29
3.1.2 自我Vth消除整流器 31
3.1.3 反向器式整流器 34
3.2 低損耗整流器使用降低逆損耗技術 37
3.2.1 架構簡介 37
3.2.2 動作原理 38
3.2.3 降低逆損耗之控制電路 40
3.2.4 三階低損耗整流器使用降低逆損耗技術 41
3.3 電路模擬與晶片佈局 43
3.3.1 電路模擬 43
3.3.2 晶片佈局 45
3.4 晶片量測 46
3.4.1 晶片介紹 46
3.4.2 量測結果 48
第四章 無線能量轉換之升壓型前端整流器 55
4.1 架構簡介 55
4.1.1 射頻動態整流器 58
4.1.2 振盪器 60
4.1.3 除頻器 63
4.1.4 One-shot電路 64
4.1.5 能量殘餘偵測機制 66
4.1.6 比較器 68
4.2 電路模擬與晶片佈局 70
4.2.1 電路模擬 70
4.2.2 晶片佈局 76
4.3 晶片量測 77
4.3.1 晶片介紹 77
4.3.2 量測結果 78
第五章 結論與未來展望 84
5.1 結論 84
5.2 未來展望 85
參考文獻 86


[1]A. S. Bakhtiar, M. S. Jalai, and S. Mirabbasi, “A high-efficiency CMOS rectifier for low-power RFID tags,” in IEEE International Conference on RFID, Apr. 2010, pp. 83-88.
[2]B. Nilsson, L. Bengtsson, and B. Svensson, “An application dependent medium access protocol for active RFID using dynamic tuning of the back-off algorithm,” in IEEE International Conference on RFID, Apr. 2009, pp. 72-79.
[3]T. Umeda, H.Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, “A 950-MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 35-41, Jan. 2006.
[4]A. Costanzo, M. Fabiani, A. Romani, D. Masotti and, V. Rizzoli, “Co-design of ultra-low power RF/Microwave receivers and converters for RFID and energy harvesting applications,” in IEEE MTT-S IMS Dig., May 2010, pp. 856-859.
[5]M. Usami, A. Sato, K. Sameshima, K. Watanabe, H. Yoshigi, and R. Imura, “Powder LSI: an ultra small RF identification chip for individual recognition applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2003, pp. 398-399.
[6]K. Kotani and T. Ito, “High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs,” in IEEE Asian Solid-State Circuits Conference (ASSCC), Nov. 2007, pp. 119-122.
[7]H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, “A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology,” IEEE J. Solid-State Circuits, vol. 42, no. 1 , pp.101-110, Jan. 2007.
[8]H. C. Lin, “Analysis and design of new analog front end for radio-frequency identification tags,” Ph.D Thesis, Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei, 2010.
[9]Y. S. Hwang and H. C. Lin, “A new CMOS analog front end for RFID tags,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2299-2307, Jul. 2009.
[10]姜家輝,915 MHz被動式小型化無線射頻詢答機天線設計,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2007。
[11]C. L. Chen, K. H. Chen, and S. I. Liu, “Efficiency-enhanced CMOS rectifier for wireless telemetry,”Electronics Letters, vol. 43, no. 18, pp. 976-978, Aug. 2007.
[12]K. H. Chen, J. H. Lu, and S. I. Liu, “A 2.4 GHz efficiency-enhanced rectifier for wireless telemetry, ” in IEEE Custom Integrated Circuits Conference (CICC), Sept. 2007, pp. 555-558.
[13]J. Yoo, L. Yan, S. Lee, Y. Kim, and H. J. Yoo, “A 5.2 mW self-configured wearable body sensor network controller and a 12 uW wirelessly powered sensor for a continuous health monitoring system,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 178-188, Jan. 2010.
[14]Y. T. Liao, H. Yao, B. Parviz, and B. Otis, “A 3μW wirelessly powered CMOS glucose sensor for an active contact lens, ” in IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp.38-40.
[15]G. Hao, P. Baltus, R. Mahmoudi, and A. van Roermund, “2.4GHz energy harvesting for wireless sensor network,” in IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Jan. 2011, pp. 16-19.
[16]C. Mikeka, H. Arai, A. Georgiadis and, A. Collado, “DTV band micropower RF energy-harvesting circuit architecture and performance analysis,” in IEEE RFID-TA, Sept. 2011, pp. 561-567.
[17]T. Paing, J. Shin, R. Zane, and Z. Popovic, “Resistor emulation approach to low-power RF energy harvesting,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1494-1501, May 2008.
[18]沈濱楠,新型低電壓正相降升壓轉換器設計,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2011。
[19]D. Ma, W. H. Ki, and C. Y. Tsui, “A pseudo-CCM/DCM SIMO switching converter with freewheel switching,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007-1014, Jun. 2003.
[20]Y. Zhang and D. Ma, “An integrated SIDO boost power converter with adaptive freewheel switching technique,” in IEEE Energy Conversion Congress and Exposition (ECCE), Sept. 2010, pp. 3516-3522.
[21]Y. J. Woo, H. P. Le, G. H. Cho, G. H. Cho, and S. I. Kim, “Load-independent control of switching DC-DC converters with freewheeling current feedback,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2798-2808, Dec. 2008.
[22]J. Han, A. von Jouanne, T. Le, K. Mayaram, and T. S. Fiez, “Novel power conditioning circuits for piezoelectric micropower generators,” in 19th Annual IEEE Applied Power Electronics Conference and Exposition, Sept. 2004, vol. 3, pp. 1541-1546.
[23]T. T. Le, J. Han, A. von Jouanne, K. Mayaram, and T. S. Fiez, “Piezoelectric micro-power generation interface circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1411-1420, Jun. 2006.
[24]E. Dallago, G. Frattini, D. Miatton, G. Ricotti, and G. Venchi, “Self-supplied integrable active high-efficiency AC-DC converter for piezoelectric energy scavenging systems” in IEEE International Symposium on Circuits and Systems (ISCAS), May 2007, pp. 1633-1636.
[25]C. Zheng and D. Ma, “Design of monolithic CMOS LDO regulator with D2 coupling and adaptive transmission control for adaptive wireless powered bio-implants,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2377-2387, Oct. 2011.
[26]H. C. Lin, D. S. Wu, C. M. Kung, Y. S. Hwang, and J. J. Chen, “New CMOS inverter-based voltage multipliers,” in IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Dec. 2010, pp. 1-4.
[27]Y. S. Hwang, B. H. Hwang, H. C. Lin, and J. J. Chen, “ PLL-based contactless energy transfer analog FSK demodulator using high efficiency rectifier, ” IEEE Trans. on Ind. Electron accepted for publication in 2011.
[28]B. Sahu, G. A. Rincon-Mora “An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 54, no. 2, pp. 312-321, Feb. 2007.
[29]林貝儒,數位控制寬範圍頻率合成器之設計,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2006。
[30]B. Razavi, “Design of analog CMOS integrated circuits,” MCGraw-Hill, New York, 2001.
[31]Y . Boulghassoul, L. W. Massengill, A. L. Sternberg, and B. L. Bhuva,“Effects of technology scaling on the SET sensitivity of RF CMOS voltage-controlled oscillators,” IEEE Trans. on Nuclear Science, vol. 52, no. 6, pp. 2426-2432, Dec. 2005.
[32]E. J. Carlson, K. Strunz, and B. P. Otis, “A 20 mV input Boost converter with efficient digital control for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 741-750, Apr. 2010.
[33]盧銘祥,使用脈波寬度調變與磁滯電壓平方控制技術之1V以下直流-直流降壓轉換器,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2010。
[34]J. Essel, D. Brenk, J. Heidrich, R. Weigel, G. Hofer, and G. Holweg, “ A low-power multi-standard frontend for wireless sensor networks, ” in IEEE Sensors, Nov. 2010, pp. 1124-1128.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊