跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李品希
研究生(外文):Pin-Shi Lee
論文名稱:運用多波長產生器搭配上行載波抑制歸零差動相位偏移調變應用於被動式光網路之研究與設計
論文名稱(外文):Study and Design of WDM-PON Based on Multi-Wavelength Generator with CSRZ-OOK Modulation
指導教授:賴柏洲賴柏洲引用關係
口試委員:高立人王延年杜日富
口試日期:2012-06-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:118
中文關鍵詞:分波多工被動式光網路多波長產生器載波抑制歸零差動相位偏移調變雷利散射
外文關鍵詞:WDM-PONMWGCSRZ-OOKRayleigh scattering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中,提出雙向長距離傳輸系統之分波多工被動式光網路(Wavelength Division Multiplexing Passive Optical Network;WDM-PON),架構中下行部分將多波長產生器(Multi-Wave-length Generator;MWG)運用在光纖終端 (Optical Line Terminal;OLT),用兩個分佈式回授雷射二極體(Distributed Feedback-Laser Diode;DFB-LD)為發射端,產生出16個載波做為傳輸通道做雙向傳輸,下行傳輸速率為10 Gbit/s;並在光網路單元(Optical Network Unit;ONU)端使用載波抑制歸零差動相位偏移鍵控(Carrier Suppressed Return-to-Zero On-Off Keying;CSRZ-OOK)調變將下行訊號再調變,做頻譜位移不僅可以避免雷利散射(Rayleigh scattering),也可以將被動式光網路的總傳輸距離提升到140km以上,上行傳輸速率為5 Gbit/s。
論文中提出四種不同下行調變碼之架構,分別比較各種下行調變碼搭配上行CSRZ-OOK調變碼之傳輸效能,驗證使用MWG產生多載波並搭配CSRZ-OOK調變,將下行光源再調變用於上行傳輸,而上下行使用不同波長可有效避免雷利散及有效利用頻寬,並可以提升傳輸距離,達到建構長距離被動式光網路系統。


In this thesis, we propose a bidirectional long-reach Wavelength Division Multiplexing Passive Optical Network(WDM-PON). In the downstream of structure uses two Distributed Feedback-Laser Diodes (DFB-LD) as transmitter connected with Multi-Wavelength Generator (MWG) which can utilize two DFB-LD to generate 16 carriers as downstream channels with 10-Gbit/s bit rate at the Optical Line Terminal (OLT). In addition, we utilize CSRZ-OOK modulation to re-modulate the downstream signals into upstream signals with 5-Gbit/s bit rate to produce spectrum displacement in each Reflective Optical Network Unit (R-ONU) in order to avoid Rayleigh scattering effect.
We propose the comparisons of four different modulations in downstream transmission with CSRZ-OOK modulation in upstream transmission. Expriments verify that we use the MWG to generate multi-carrier with CSRZ-OOK modulation as the upstream channels. Hence, the results showed that it not only aviods Rayleigh scattering effect to bidirectional WDM-PON, but also raises the transmission distance of Passive Optical Network(PON) to 140 km and achieving the Long-Reach PON.


中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3論文架構 4
第二章 被動式光網路與光元件簡介 5
2.1寬頻接取網路技術 5
2.2色散及光纖介紹 7
2.2.1 色散簡介 7
2.2.2 單模光纖 9
2.2.3 色散補償光纖 10
2.3光放大器 11
2.3.1 半導體光放大器(SOA) 13
2.3.2 摻鉺光纖放大器(EDFA) 15
2.3.2.1 摻鉺光纖放大器原理 15
2.3.2.2 摻鉺光纖放大器放大特性 19
2.3.2.3 摻鉺光纖放大器參數定義 20
2.3.3 拉曼光纖放大器(RFA) 21
2.3.3.1 拉曼放大器介紹 22
2.3.3.2 拉曼放大器參數介紹 24
2.3.4 光放大器總結 27
2.4被動式光網路架構及技術 28
2.4.1 分時多工被動式光網路(TDM-PON) 29
2.4.2 分波多工被動式光網路(WDM-PON) 32
2.4.3 長距離被動式光網路(Long-Reach PON) 33
2.4.4 被動式光網路未來發展 34
2.5光纖非線性效應 39
2.5.1 受激拉曼散射(SRS) 40
2.5.2 受激柏努力散射(SBS) 42
2.5.3 自我相位調變(SPM) 43
2.5.4 交互相位調變(XPM) 44
2.5.5 四波混頻(FWM) 44
2.6眼圖測試與誤碼率計算 46
2.6.1 眼圖測試 46
2.6.2 光信號雜訊比(OSNR) 49
2.6.3 誤碼率計算 50
第三章 多波長產生器簡介 52
3.1多波長產生器 52
3.1.1 相位調變器 52
3.1.2 馬赫倫德爾光強度調變器 55
3.1.3 多波長產生器 57
3.2調變碼討論與分析 63
3.2.1 非歸零開關鍵制(NRZ-OOK) 64
3.2.2 歸零開關鍵制(RZ-OOK) 66
3.2.3 載波抑制歸零開關鍵制(CSRZ-OOK) 67
3.2.4 非歸零差動相位偏移鍵制(NRZ-DPSK) 68
3.2.5 歸零差動相位偏移鍵制(RZ-DPSK) 71
3.2.6 載波抑制歸零差動相位偏移鍵制(CSRZ-DPSK) 73
第四章 架構設計與結果討論 75
4.1 架構設計 76
4.1.1 OLT端架構設計 77
4.1.2 ONU端架構設計 78
4.2傳輸系統設計與討論 81
4.2.1 OOK(DS)搭配CSRZ-OOK(US) 83
4.2.1.1 OOK調變碼下行傳輸 83
4.2.1.2 OOK調變碼上行傳輸(CSRZ-OOK) 86
4.2.2 DPSK(DS)搭配CSRZ-OOK(US) 89
4.2.2.1 DPSK調變碼下行傳輸 89
4.2.2.2 DPSK調變碼上行傳輸(CSRZ-OOK) 92
4.3系統架構結果討論 96
4.3.1 四種調變碼下行傳輸架構總結 96
4.3.2 四種調變碼上行傳輸架構總結 99
4.3.3 傳輸架構總結 …..102
第五章 結論 ………………104
參考文獻 ........................106
附錄A : 在學期間發表之論文 .............110


[1] 賴柏洲編著,光纖通信與網路技術,全華科技圖書公司,台北,08,2003,第1章和第11章。
[2] D. K. Hunter, P. J. Legg, and I. Andonovic, “Architecture for large for large dilated optical TDM switching network,” IEE PROCEEDINGS-J, vol. 140, no. 5, Oct. 1993.
[3] B. Mukherjee, “WDM-Based local lightwave networks-Part I: single-hop systems”, IEEE Network, vol.6, pp.12-27, May 1992.
[4] W. Li, M. Chen, Y. Dong, and S. Xie, “All-Optical Format Conversion From NRZ to CSRZ and Between RZ and CSRZ Using SOA-Based Fiber Loop Mirror,”IEEE Photonics Technology Letters, vol. 16, no. 1, pp. 203-205, Jan. 2004.
[5] M. Daikoku, N. Yoshikane, and I. Morita, “Performance comparison of modulation formats for 40 Gbit/s DWDM transmission systems,” in Proc. Optical Fiber Communication Conf.(OFC2005), vol. 5, Mar. 2005, pp. 3-5.
[6] C. W. Chow, “Wavelength Remodulation Using DPSK Down-and-Upstream With High Extinction Ratio for 10-Gb/s DWDM-Passive Optical Networks,” IEEE Photonics Technology Letters, vol. 20, no. 1, pp. 12-14, Jan. 2008.
[7] O. Akanbi, J. Yu, and G. K. Chang, “Interleaved Bidirectional Transmission of 16 X 10-Gb/s DWDM Signals Using DPSK Modulation Format and In-line Semiconductor Optical Amplifiers,” Journal of Lightwave Technology, vol. 25, no. 1, pp. 325-334, Jan. 2007.
[8] D. Nesset et al., “10 Gbit/s Bidirectional Transmission in 1024-way Split, 110 km Reach, PON System using Commercial Transceiver Modules, Super FEC and EDC,” in Proc. ECOC, 2005, pp. Tu 1.3.1.
[9] S. Hornung, D. Payne, and R. Davey, “New Architecture for an All Optical Network,” in Proc. the Optical Fiber Communication Conf., Anaheim, CA, 2005, Paper OTuH7.
[10] H. Suzuki, M. Fujiwara, and K. Iwatsuki, “Application of Super-DWDM Technologies to Terrestrial Terabit Transmission Systems,” Journal of Lightwave Technology, vol. 24, no. 5, pp.1998-2005, May 2006.
[11] J. M. Huang, “The Research and Design of Super-DWDM Systems by Using Improved OCSM and Dispersion Compensation Technique,” MD. Thesis, Graduate Institute of Computer and Communication Engineering, Nation Taipei University of Technology, Taipei, 2007.
[12] J. Zhao, L. K. Chen, and C. K. Chan, “A novel re-modulation scheme to achieve colorless high-speed WDM-PON with enhanced tolerance to chromatic dispersion and re-modulation misalignment,” in Proc. OFC, Anaheim, CA, Mar. 25–29, 2007, Paper OWD2.
[13] F. R. W. Tackh, A. R. Chraplyvy, and D. Marcuse, “Reduction of Four wave mixing Crosstalk in WDM systems using unequally spaced channels,” IEEE Photo. Technol. Lett., vol. 6, no. 6, Jun. 1994.
[14] M. J. Omahony, “Semiconductor Laser Optical Amplifiers for Use in Future Fiber Systems,” IEEE Journal of Lightwave Technology, vol. 6, no.4, pp.531-544, Apr. 1988.
[15] J. W. Nicholson, “Dispersion compensating Raman Amplifiers with pump reflectors for increased efficiency,” Journal of Lightwave Technology, vol. 20, no. 8, pp. 1758-1762, Aug. 2003.
[16] IEEE 802.3ah.
[17] J. J. Yoo, “A WDM-Ethernet hybrid Passive Optical Network Architecture,” in Proc. International Conference on Advanced Communication Technology, vol. 3, no. 4, Feb. 2006, pp. 1754-1757.
[18] A. Banerjee et al., “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” Journal of Optical Networking, vol. 4, no. 11, pp. 737-758, Nov. 2005.
[19] D. P. Shea and J. E. Mitchell, “Long-Reach Optical Access Technologies,” in Proc. IEEE Network, vol. 21, Sept. 2007, pp. 5-11.
[20] R. Lin, “Next Generation PON in Emerging Networks,” in Proc. the Optical Fiber Communication Conf., Feb. 2008.
[21] D. P. Shea and J. E. Mitchell, “A 10 Gb/s 1024-Way Split 100-km Long-Reach Optical Access Network,” IEEE Journal of Lightwave Technology, vol. 25, no. 3, pp. 685-693, Mar. 2007.
[22] G. Talli and P. D. Townsend, “Hybrid DWDM-TDM Long-Reach PON for Next-Generation Optical Access,” IEEE Journal of Lightwave Technology, vol. 24, no. 7, pp. 2827-2834, Jul. 2006.
[23] D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber Dispersion and Dispersion Slope Compensation in a 40-Channel 10-Gb/s 3200-km Transmission Experiment Using Cascaded Single-Cavity GiresTournois Etalons,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 299-301, Jan. 2004.
[24] G. P. Agrawal, Nonlinear fiber optics, Academic Pressfourth, San Diego, 2007.
[25] B. Lathi, Communication Systems, New York: Wiley, 1968, ch4.
[26] J. C. Cartledge, “Combining Self-Phase Modulation and Optimum Modulation Condition to Improve the Performance of 10-Gb/s Transmission Systems Using MQW Mach-Zehnder Modulators,” Journal of Lightwave Technology, vol. 18, no. 5, pp. 647-654, May 2000.
[27] M. Fujiwara et al., “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” Journal of Lightwave Technology, vol. 21, no. 11, pp. 2705-2714, Nov. 2003.
[28] J. Yu et al., “Polarization-Insensitive All-Optical Upconversionfor Seamless Integration Optical Core/Metro/Access Networks With ROF Systems Based on a Dual-Pump FWM Scheme , ” Journal of Lightwave Technology, vol. 27, no. 14, pp. 2605-2611, Jul. 2009.
[29] M. Pfennigbauer and P. Winzer, “Choice of MUX/DEMUX Filter Characteristic for NRZ, RZ, and CSRZ DWDM Systems,” Journal of Lightwave Technology, vol. 24, no. 4, pp.1689-1696, Apr. 2006.
[30] C. H. Wang, C. W. Chow, “Rayleigh Noise Mitigation Using Single-Sideband Modulatio Generated by a Duel-Parallel MZM for Carrier Distributed PON,” IEEE Photonics Technology letters, vol. 22, no. 11, pp. 820-822, Jun. 2010
[31] T. Hoshida, O. Vassilieva, and K. Yamada, “Optimal 40 Gb/s modulation formats for spectrally efficient long-haul DWDM systems,” Journal of Lightwave Technology, vol. 20, no. 12, pp.1989-1996, Dec. 2002.
[32] S. H. Oh et al., “2.5Gbps WDM-PON tunable light source hybrid integrated with superluminescent diode and polymeric waveguide Bragg reflector,” in Proc. ECOC 2009, Vienna, 2009, pp. 1-2.
[33] J. Zhang et al., “A Novel Bidirectional RSOA Based WDM-PON with Downstream DPSK and Upstream Re-Modulated OOK Data,” in Proc. ICTON 2009, Azores, 2009, pp. 1-5.
[34] Q. T. Nguyen, P. Besnard and L. Bramerie et al., “Bidirectional 2.5-Gb/s WDM-PON Using FP-LDs Wavelength-Locked by a Multiple-Wavelength Seeding Source Based on a Mode-Locked Laser,” IEEE Photonics Technology letters, vol. 22, no. 11, pp. 733-735, Jun., 2010.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top