跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂秉勳
研究生(外文):Ping-Hsun Lu
論文名稱:運用光梳頻產生器搭配無色光源技術應用於雙向傳輸之分波多工被動式光網路的研究與設計
論文名稱(外文):Study and Design of Bidirectional WDM-PON based on Optical Frequency Comb Generator and Colorless Technique
指導教授:賴柏洲賴柏洲引用關係
口試委員:楊萬興張祥利詹勳鴻
口試日期:2012-06-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:128
中文關鍵詞:雙臂驅動式馬赫倫德爾強度調變器光梳頻產生器遠端泵激背向雷利散射
外文關鍵詞:DD-MZMOFCGRemote pumpingRayleigh backscattering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出雙臂驅動式馬赫倫德爾強度調變器(Dual Drive-Mach Zehnder Modulator;DD-MZM)搭配相移器(phase shift)、衰減器(attenuator)、電放大器(Electrical Amplifier;EA)以及振盪器(oscillator)組成之光梳頻產生器(Optical Frequency Comb Generator;OFCG),應用於雙向傳輸系統之分波多工被動式光網路(Wavelength Division Multiplexing Passive Optical Network;WDM-PON),利用此光梳頻產生器產生32個載波作為傳輸通道,其通道間距為0.16 nm(20 GHz),將偶數波長通道(even channel)運用於下行傳輸,傳輸速率設定為10 Gbit/s;上行使用奇數波長通道(odd channel),傳輸速率設定為5 Gbit/s,並且在光網路單元(Optical Network Unit;ONU)端使用無色光源(colorless)技術降低系統成本。
本論文提出三種不同傳輸架構,上、下行分別比較兩組調變碼,驗證使用OFCG產生多載波搭配colorless技術,將下行光源重新調變應用於上行傳輸,有效節省93.7 %之雷射成本。使用遠端泵激(remote pumping)傳輸系統可將主動元件全部配置於光線路終端(Optical Line Terminal;OLT),降低系統之維修成本。同時上、下行使用不同波長,不僅可減少背向雷利散射(Rayleigh backscattering),也可以將被動式光網路的總傳輸距離達到105 km。

In the thesis, we propose Optical Frequency Comb Generation (OFCG) which consists of a Dual-drive Mach-Zehnder Modulator (DD-MZM), phase shift, attenuator, Electrical Amplifier (EA), and an oscillator. The proposed OFCG can be applied to bidirection Long-Reach Wavelength Division Multiplexing Passive Optical Network. Utilizes OFCG to generate 32 carriers as transmission channels, and the space among channels is 0.16 nm, which the even channels are chosen as the downstream channels with 10 Gbit/s bit rate. In addition, the odd channels which are chosen as the upstream channels with 5 Gbit/s bit rate, and which use colorless technique are implemented in each Optical Network Unit(ONU) in order to reduce the cost.
This thesis proposes the comparison of three different transmission structures matching two compositions of upstream and downstream modulation codes, respectively. Simulations verify that use the OFCG to generate multi-carrier, and utilize the odd channels with colorless technique are re-modulated as the upstream channels. Besides, the remote pumping system can set all active conponents at the Optical Line Terminal(OLT). To summarize, using OFCG and colorless technique in remote pumping system can reduce the cost effectively.
The results show that use odd and even channels as upstream and downstream channels respectively not only avoids Rayleigh backscattering effect to bidirection WDM-PON, but also raises the transmission distance of PON to 105 km and achieves the Long-Reach PON.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 3
第二章 基礎理論 4
2.1寬頻接取網路技術 4
2.2被動式光網路架構及技術 6
2.2.1 分時多工被動式光網路(TDM-PON) 7
2.2.2 分波多工被動式光網路(WDM-PON) 10
2.2.3 長距離被動式光網路(Long-Reach PON) 11
2.2.4 被動式光網路未來發展 13
2.3光放大器 17
2.3.1 半導體光放大器 19
2.3.2 摻鉺光纖放大器(EDFA) 21
2.3.2.1 架構與泵激方式 21
2.3.2.2 參數定義 24
2.3.3 拉曼光纖放大器 25
2.3.3.1 放大原理 25
2.3.3.2 拉曼光纖放大器基本架構 28
2.3.3.3 三種泵激架構之比較 30
2.3.4 三種光放大器比較 30
2.4色散及光纖介紹 32
2.4.1 色散簡介 32
2.4.2 單模光纖 34
2.4.3 色散補償光纖 35
2.5光纖非線性效應 36
2.5.1 受激散射效應 36
2.5.1.1 受激拉曼散射效應 36
2.5.1.2 受激布里淵散射效應 38
2.5.2 非線性折射率效應 38
2.5.2.1 自相位調變 38
2.5.2.2 交互相位調變 39
2.5.2.3 四波混頻 40
2.6調變格式 42
2.6.1 非歸零開關鍵控(NRZ-OOK) 42
2.6.2 歸零開關鍵控(RZ-OOK) 44
2.6.3 載波抑制歸零開關鍵控(CSRZ-OOK) 45
2.6.4 非歸零差分相位移向鍵控(NRZ-DPSK) 46
2.6.5 歸零差分相位移向鍵控(RZ-DPSK) 49
2.6.6 載波抑制歸零差分相位移向鍵控(CSRZ-DPSK) 51
2.7系統效能判別 53
2.7.1 誤碼率計算 53
2.7.2 光信號雜訊比(OSNR) 55
2.7.3 眼圖分析 57
第三章 實驗技術與原理 60
3.1光梳頻產生器 60
3.1.1 馬赫倫德爾強度調變器 60
3.1.2 頻譜平坦條件 64
3.1.3 光梳頻產生器 66
3.2無色光源(colorless)技術簡介 73
3.2.1 頻譜切割式 73
3.2.2 入射鎖模式 74
3.2.3 波長再利用式 75
3.2.4 光梳頻產生式 76
第四章 系統架構設計與比較 80
4.1架構設計 81
4.1.1 OLT端架構設計 81
4.1.2 LE處架構設計 83
4.1.3 ONU端架構設計 83
4.2傳輸架構設計與討論 84
4.2.1 預補償系統 85
4.2.1.1 預補償系統下行傳輸結果分析 87
4.2.1.2 預補償系統上行傳輸結果分析 90
4.2.2 後補償系統 93
4.2.2.1 後補償系統下行傳輸結果分析 94
4.2.2.2 後補償系統上行傳輸結果分析 96
4.2.3 遠端泵激系統 99
4.2.3.1 遠端泵激系統下行傳輸結果分析 101
4.2.3.2 遠端泵激系統上行傳輸結果分析 104
4.3系統架構結果與討論 107
4.3.1 下行傳輸架構結果分析 107
4.3.2 上行傳輸架構結果分析 109
4.3.3 傳輸架構總結 111
第五章 結論 113
參考文獻 115
附錄A:在學期間發表之論文 120


[1] 賴柏洲編著,光纖通信與網路技術,全華科技圖書公司,台北,2003,第1-65頁。
[2] 李揚漢、許立根、譚昌文、洪鴻文、曹士林、楊淳良和趙亮琳編著,光纖通信網路,五南圖書出版股份有限公司,台北,2007,第29-31頁。
[3] 王崗嶸和陳鴻仁編著,DWDM技術入門,全華科技圖書公司,台北,2002,第3-6頁。
[4] D. Nesset et al., “10 Gbit/s Bidirectional Transmission in 1024-way Split, 110 km Reach, PON System using Commercial Transceiver Modules, Super FEC and EDC,” in Proc. ECOC 2005, 2005, pp. Tu 1.3.1.
[5] S. Hornung, D. Payne, and R. Davey, “New Architecture for an All Optical Network,” in Proc. Optical Fiber Communication Conf.(OFC 2005), Anaheim, 2005, Paper OTuH7.
[6] N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Characterization of dual-electrode Mach-Zehnder modulator based optical frequency comb generator in two regimes,” in Proc. IEEE Lasers and Electro-Optics Society(LEOS2008), Nov. 2008, pp. 186-187.
[7] T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optimization of Electro-Optic Comb Generation Using Conventional Mach-Zehnder Modulator,” in Proc. 2007 IEEE International Topical Meeting on Microwave Photonics, Oct. 2007, pp. 50-53.
[8] IEEE 802.3ah.
[9] J. J. Yoo, “A WDM-Ethernet hybrid Passive Optical Network Architecture,” in Proc. International Conference on Advanced Communication Technology, vol. 3, no. 4, Feb. 2006, pp. 1754-1757.
[10] A. Banerjee et al., “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” Journal of Optical Networking, vol. 4, no. 11, pp. 737-758, Nov. 2005.
[11] S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon, and C. H. Lee, “Dense WDM-PON Based on Wavelength-Locked Fabry–Pérot Laser Diodes,” IEEE Photonics Technology Letters, vol. 17, no. 7, pp. 1579-1580, Jul. 2005.
[12] W. Lee et al., “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technology Letters, vol. 17, no. 11, pp. 2460-2462, Nov. 2005.
[13] D. P. Shea and J. E. Mitchell, “Long-Reach Optical Access Technologies,” in Proc. IEEE Network, vol. 21, Sept. 2007, pp. 5-11.
[14] R. Lin, “Next Generation PON in Emerging Networks,” in Proc. Optical Fiber Communication Conf.(OFC 2008), Feb. 2008, pp. 1-3.
[15] D. P. Shea and J. E. Mitchell, “A 10 Gb/s 1024-Way Split 100-km Long Reach Optical Access Network,” Journal of Lightwave Technology, vol. 25, no. 3, pp. 685-693, Mar. 2007.
[16] G. Talli and P. D. Townsend, “Hybrid DWDM-TDM Long-Reach PON for Next-Generation Optical Access,” Journal of Lightwave Technology, vol. 24, no. 7, pp. 2827-2834, Jul. 2006.
[17] 上下真司編著,圖解光纖通信原理與最新應用技術,建興文化事業有限公司,台北,2003,第166-171頁。
[18] M. J. Omahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” Journal of Lightwave Technology, vol. 6, no. 4, pp. 531-544, Apr. 1988.
[19] P. Hajireza, S. Abbasizargaleh, D. Kuma, H. A. A. Rashid, S. D. Emami, and S. W. Harun, “Numerical Study of Macro Bending Effect on High Concentration EDFA,” in Proc. International Conference on Computer and Communication Engineering(ICCCE2010), Kuala Lumpur, May 2010, pp.1-4.
[20] J. W. Nicholson, “Dispersion compensating Raman Amplifiers with pump reflectors for increased efficiency,” Journal of Lightwave Technology, vol. 20, no. 8, pp.1758-1762, Aug. 2003.
[21] C. R. S. Fludger, V. Handerck, and R. J. Mears, “Ultra-wide bandwidth Raman amplifiers,” in Proc. Optical Fiber Communication Conf.(OFC2002), Anaheim Convention Center Anaheim, California, Mar. 2002, pp. 60-62.
[22] J. H. Chen, “Implementation and Research of the Broadband and High-Gain Raman Fiber Amplifier,” MD. Thesis, Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei, 2006.
[23] J. Zhao, L. K. Chen, and C. K. Chan, “A novel re-modulation scheme to achieve colorless high-speed WDM-PON with enhanced tolerance to chromatic dispersion and re-modulation misalignment,” in Proc. Optical Fiber Communication Conf.(OFC 2007), Anaheim, Mar. 25-29, 2007, Paper OWD2.
[24] 李長春編著,超長距離光傳輸技術基礎及其應用,人民郵電出版社,北京,2008,第80-95頁。
[25] L. Paradiso, P. Boffi, L. Marazzi, N. D. Vecchia, M. Artiglia, and M. Martinelli, “Experimental XPM, SPM, FWM Penalty Evaluation in Very Dense WDM Optical Systems,” in Proc. Conference on Lasers and Electro-Optics (CLEO2005), vol. 2, May 2005, pp. 1339-1341.
[26] M. Pfennigbauer and P. Winzer, “Choice of MUX/DEMUX Filter Characteristic for NRZ, RZ, and CSRZ DWDM Systems,” Journal of Lightwave Technology, vol. 24, no. 4, pp.1689-1696, Apr. 2006.
[27] T. Hoshida, O. Vassilieva, and K. Yamada, “Optimal 40 Gb/s modulation formats for spectrally efficient long-haul DWDM systems,” Journal of Lightwave Technology, vol. 20, no. 12, pp.1989-1996, Dec. 2002.
[28] S. H. Oh et al., “2.5 Gbps WDM-PON tunable light source hybrid integrated with superluminescent diode and polymeric waveguide Bragg reflector,” in Proc. ECOC 2009, Vienna, 2009, pp. 1-2.
[29] C. W. Chow, “Wavelength Remodulation Using DPSK Down-and-Upstream With High Extinction Ratio for 10-Gb/s DWDM-Passive Optical Networks,” IEEE Photonics Technology Letters, vol. 20, no. 1, pp.12-14, Jan. 2008.
[30] G. Berrettini et al., “Colorless WDM-PON Architecture for Rayleigh Backscattering and Path-Loss Degradation Mitigation,” IEEE Photonics Technology Letters, vol. 21, no. 7, pp. 453-455, 2009.
[31] J. Zhang et al., “A Novel Bidirectional RSOA Based WDM-PON with Downstream DPSK and Upstream Re-Modulated OOK Data,” in Proc. ICTON 2009, Azores, 2009, pp. 1-5.
[32] K. Y. Cho, Y. Takushima, K. R. Oh, and Y. C. Chung, “Operating wavelength range of 1.25-Gb/s WDM PON implemented by using RSOA,” in Proc. Optical Fiber Communication Conf.(OFC 2008), San Diego, CA, 2008, pp.1-3.
[33] Z. A. Qazwini and H. Kim, “Bidirectional WDM PON Using Directly Modulated Lasers for Downlink and RSOAs for Uplink,” in Proc. Photonics Global Conference (PGC2010), Singapore, 2010, pp.1-5.
[34] F. Zhang et al., “A Broadcast/Multicast-Capable Carrier-Reuse WDM-PON,” Journal of Lightwave Technology, vol. 29, no. 15, pp. 2276-2284, Aug. 2011.
[35] K. M. Choi and C. H. Lee, “A Low-Noise Broadband Light Source for a WDM-PON Based on Mutually Injected Fabry–Pérot Laser Diodes With RF Modulation,” IEEE Photonics Technology Letters, vol. 20, no. 24, pp. 2072-2074, Dec. 2008.
[36] Q. T. Nguyen et al., “24 channels colorless WDM-PON with L-band 10 Gb/s downstream and C-band 2.5 Gb/s upstream using multiplewavelengths seeding sources based on mode-locked lasers,” in Proc. Optical Fiber Communication Conf.(OFC2010), Marcoussis, France, 2010, pp.1-3.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top