跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏暵
研究生(外文):Bo-Han Hwang
論文名稱:線性穩壓器與切換式轉換器於可攜式應用之研製
論文名稱(外文):Design and Implementation of Linear Regulator and Switching Converter for Portable Applications
指導教授:陳建中陳建中引用關係黃育賢
指導教授(外文):Jiann-Jong ChenYuh-Shyan Hwnag
口試委員:王多柏邱弘緯邱文偉馬斌嚴史富元郭建宏吳東旭
口試委員(外文):To-Po WangHung-Wei ChiuWen-Wei QiuBin-Yen MaFu-Yuan ShimChien-Hung KuoDong-Shiuh Wu
口試日期:2012-07-09
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:103
中文關鍵詞:發光二極體驅動器並聯式穩壓器加速型脈波寬度調變倍降壓轉換器電源管理晶片類比/數位式快速暫態控制電路主動電流感測
外文關鍵詞:LED DriverShunt RegulatorAcceleration-PWMDouble/Step-Down ConverterPower Management ICsAnalog/Digital Fast Transient Controlled CircuitsActive-Current-Sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
可攜式設備在最近幾年有很大的需求,幾乎每個人都有一個可攜式設備,如手機,隨身聽…等等。可攜式設備對於人類來說已是個不可或缺的配件。在可攜式設備中有許多模組,例如天線模組處理訊號的接收與發送,顯示及背光模組使資訊可讀,而可攜式設備的核心,訊號處理單元及記憶單元與控制單元使我們的設備更具智慧。然而,如何在一顆充飽的電池中去延長使用時間是一個大問題。最常見的解決方法是加大電池容量,另一個解法則是使用電源管理單元增加能源使用效率。作者在本文提供了一個用於背光模組裡發光二極體驅動器的電流鎖定迴路,一個線性穩壓器的應用。所提出的電流鎖定迴路增加了發光二極體的精準度。此外,藉由光平衡控制方法降低了暫態時對於電源端的影響。另一個線性穩壓器的應用是並聯式穩壓器,其雙迴路架構使用的電流感測回授技術也在本文裡提出。此外,並聯式穩壓器更可以應用在無線射頻辨識標籤系統裡。本論文更提出了數位式的快速暫態響應方法在降壓轉換器上,這是一個加速型的脈波寬度調變降壓轉換器,最快暫態響應少於5微秒。為更適於可攜式應用,切換式直流-直流轉換器是一個應用在電源管理單元的鋰離子電池電源管理晶片。所提出的電路可以在同一控制模式裡實現升壓及降壓功能。

The portable devices have a great demand in recent years, everyone almost have one of the portable devices, such as cell phone, MP3 player, etc. The portable device is indispensable equipment for human beings. In portable devices, there are many modules. For example, antenna module handles the signal receiving and sending. Display module and back light module make the information readable for people. Signal processing unit, memory unit and controlled unit which make device more intelligent are the core of portable devices. However, how to prolong the using time is a big issue in once battery life. Most solution of prolonging is the battery capacity enhancing. Another solution is adopting power management unit (PMU) to improve the power efficiency. The author provides the application of linear regulator and switching DC-DC converter on portable devices. One application of the linear regulator is the current locked loop (CLL) of LED driver in the back light module. The proposed CLL technique increases the accuracy of LED current. Moreover, with the light-balanced controlled scheme, the influence of transient response is the smallest on the output voltage node. The other application of linear regulator is shunt regulator; the dual-loop shunt regulator using current-sensing feedback techniques is proposed in this thesis. The dual-loop shunt regulator which has fast transient response can be adopted on RFID tag system. Moreover, this thesis provides a digitalized fast transient response scheme on the buck converter, that is an accelerated pulse-width-modulation buck converter. Maximum transient response is less than 5 us. For further more fitting the portable application, the switching DC-DC converter is a working in Li-ion battery power management IC in PMU application. The proposed circuit achieves the function of step-up and step-down with one mode controlled circuit.

中文摘要 i
ABSTRACT ii
誌 謝 iv
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 相關研究發展現況 1
1.1.1 線性穩壓器(Linear Regulator)研究發展現況 2
1.1.2 切換式轉換器(Switching Converter)研究發展現況 3
1.2 動機與目的 5
1.2.1 可攜式設備三大核心架構 5
1.2.1.1 電源供應系統(Power Supply System) 6
1.2.1.2 射頻系統(Radio Frequency System) 7
1.2.1.3 邏輯系統(Logic System) 7
1.3 論文架構簡介 8
第二章 線性穩壓器的設計與考量 9
2.1 線性穩壓器(Linear Regulator)的種類 9
2.1.1 低壓降穩壓器(LDO) 12
2.1.1.1 負載調節率(Load Regulation) 12
2.1.1.2 線性調節率(Line Regulation) 13
2.1.1.3 暫態響應 (Transient Response) 14
2.1.2 並聯式穩壓器(Shunt Regulator) 15
2.1.2.1 線性調節率(Linear Regulation) 16
2.2 線性穩壓器(Linear Regulator)的應用 17
2.2.1 具電流鎖定迴路之WLED調光器 17
2.2.2 雙迴路並聯式穩壓器(Shunt Regulator) 20
2.3 設計與考量 22
2.3.1 具電流鎖定迴路之WLED調光器的設計與考量 26
2.3.2 雙迴路並聯式穩壓器(Shunt Regulator)的設計與考量 30
2.4 量測結果 34
2.4.1 具電流鎖定迴路之WLED調光器的量測結果 35
2.4.1.1 電路量測圖 35
2.4.1.2 比較表之討論 38
2.4.2 雙迴路並聯式穩壓器(Shunt Regulator)的量測結果 39
2.4.2.1 電路量測圖 40
2.4.2.2 規格表與比較表之討論 42
第三章 切換式直流-直流轉換器:降壓式轉換器 44
3.1 切換式直流-直流轉換器的種類 44
3.1.1 降壓轉換器(Step-down Converter) 44
3.1.2 升壓轉換器(Step-up Converter) 48
3.1.3 降升壓轉換器(Step-down/up converter) 51
3.2 切換式直流-直流轉換器的控制器 54
3.3 脈波寬度調變控制電路的改良 56
3.3.1 比例積分微分(PID)補償器 57
3.3.2 鋸齒波產生器 58
3.3.3 緩起動電路 59
3.3.4 加速型脈波寬度調變(APWM)器 60
3.4 加速型脈波寬度調變降壓式轉換器之模擬結果 61
3.4.1 行為模擬 61
3.4.2 H-spice模擬 63
3.5 加速型脈波寬度調變降壓式轉換器之量測結果 64
3.5.1 電路量測圖 65
3.5.2 規格表與比較表之討論 69
第四章 倍降壓轉換器 71
4.1 倍壓器的操作原理 73
4.2 倍降壓轉換器的設計 74
4.3 磁滯電流控制倍降壓轉換器的設計 76
4.3.1 行為模擬 76
4.3.2 於可攜式設備內的電路設計考量 78
4.3.3 電路區塊描述 79
4.3.3.1 電流感測電路 79
4.3.3.2 磁滯電流控制(Hysteresis-Current-Controlled)電路 81
4.3.3.3 磁滯電流控制倍降壓轉換器的數位電路 82
4.3.3.4 比例積分微分(PID)補償器 84
4.3.4 H-spice模擬結果 85
4.4 磁滯電流控制倍降壓轉換器的量測結果 88
4.4.1 電路量測 89
4.4.2 規格表與比較表的定義與討論 94
第五章 結論與未來展望 96
5.1 結論 96
5.2 未來展望 97
參考文獻 99


[1]G. Bontempo, T. Signorelli, and F. Pulvirenti, “Low supply voltage, low quiescent current, ULDO linear regulator, “ in IEEE International Conference on Electronics, Circuits and Systems, 2001, pp. 409-412.
[2]G. W. den Besten and B. Nauta, “Embedded 5 V-to-3.3 V voltage regulator for supplying digital IC''s,” IEEE Journal of Solid-State Circuits, vol. 33, no. 7, pp. 956-962, July 1998.
[3]Ka Nang Leung and P. K. T. Mok, “A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1691-1702, Oct. 2003.
[4]Jiann-Jong Chen, Fong-Cheng Yang, Che-Min Kung, Bao-Peng Lai, and Yuh-Shyan Hwang, “A capacitor-free fast-transient-response LDO with dual-loop controlled paths,” in IEEE Asian Solid-State Circuits Conference, 2007, pp. 364-367.
[5]Jiann-Jong Chen, Ming-Shian Lin, Ho-Cheng Lin, and Yuh-Shyan Hwang, “Sub-1V capacitor-free low-power-consumption LDO with digital controlled loop,” in IEEE Asia Pacific Conference on Circuits and Systems, 2008, pp. 526-529.
[6]Yuh-Shyan Hwang, Ming-Shian Lin, Bo-Han Hwang, and Jiann-Jong Chen, “A 0.35μm CMOS sub-1V low-quiescent-current low-dropout regulator,” in IEEE Asian Solid-State Circuits Conference, 2008, pp. 153-156.
[7]G. A. Rincon-Mora and P. E. Allen, “A low-voltage, low quiescent current, low drop-out regulator,” IEEE Journal of Solid-State Circuits, vol. 33, no. 1, pp. 36-44, Jan. 1998.
[8]Tsz Yin Man, Ka Nang Leung, Chi Yat Leung, P. K. T. Mok, and Mansun Chan, “Development of single-transistor-control LDO based on flipped voltage follower for SoC,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55; no. 5, pp. 1392-1401, May 2008.
[9]Xiong Du, Luowei Zhou, and Heng-Ming Tai, “Double-frequency buck converter,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1690-1698, May 2009.
[10]Chun-Yu Hsieh and Ke-Horng Chen, “Boost DC-DC converter with fast reference tracking (FRT) and charge-recycling (CR) techniques for high-efficiency and low-cost LED driver,” IEEE Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2568-2580, Sept. 2009.
[11]X. Peng, K. A. Corzine, and G. K. Venayagamoorthy, “Multiple reference frame-based control of three-phase PWM boost rectifiers under unbalanced and distorted input conditions,” IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 2006-2017, July 2008.
[12]M. D. Mulligan, B. Broach, and T. H. Lee, “A 3MHz low-voltage buck converter with improved light load efficiency,” in IEEE International Solid-State Circuits Conference, 2007, pp. 528-620.
[13]Feng Su and Wing-Hung Ki, “Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor,” in IEEE International Solid-State Circuits Conference, 2009, pp. 446-447,447a.
[14]C. Restrepo, S. Member, J. Calvente, A. Cid-pastor, A. E. Aroudi, R. Giral, and S. Member, “A noninverting buck-boost DC-DC switching converter with high efficiency and wide bandwidth,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2490-2503, Sept. 2011.
[15]Ran Yu, Hanjun Jiang, Lingwei Zhang, Chun Zhang, and Zhihua Wang, “A hybrid regulator with boost charge pump and low-dropout linear regulation,” in IEEE International Conference on Solid-State and Integrated Circuit Technology, 2010, pp. 587-589.
[16]J. J. Chen, B. H. Hwang, J. H. Hsu, Y. S. Hwang, and C. C. Yu, “Fast-response single-inductor dual-output hysteresis-current-controlled DC-DC buck converter,” Analog Integr. Cir. Signal Proc., vol. 70, no. 3, pp. 405-415, July 2011.
[17]Zhilei Yao, Lan Xiao, and Yangguang Yan, “Dual-buck full-bridge inverter with hysteresis current control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3153-3160, Aug. 2009.
[18]Fong-Cheng Yang, Chih-Chiang Chen, Jiann-Jong Chen, Yuh-Shyan Hwang, and Wen-Ta Lee, “Hysteresis-current-controlled buck converter suitable for li-ion battery charger,” in Conf. Communications, Circuits and Systems Proceedings, 2006, pp. 2723-2726.
[19]K. K. Leung, S. Member, H. S. Chung, and S. Member, “Dynamic hysteresis band control of the buck converter with fast transient response,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 7, pp. 398-402, July 2005.
[20]Chia-Hsiang Lin, Hong-Wei Huang, and Ke-Horng Chen, “Fast transient technique (FTT) in buck current-mode DC-DC converters for low-voltage SoC systems,” in Custom Integrated Circuits Conference, 2008, pp. 25-28.
[21]Jiann-Jong Chen, “An active current-sensing constant-frequency HCC buck converter using phase-frequency-locked techniques,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 4, pp. 761-769, Apr. 2008.
[22]W. Liou, M. Yeh, and Y. L. Kuo, “A high efficiency dual-mode buck converter IC for portable applications,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 667-677, Mar. 2008.
[23]Wonseok Oh and B. Bakkaloglu, “A CMOS low-dropout regulator with current-mode feedback buffer amplifier,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 10, pp. 922-926, Oct. 2007.
[24]A. T. Kelly, P. C. Adell, A. F. Witulski, W. T. Holman, R. D. Schrimpf, and V. Pouget, “Total dose and single event transients in linear voltage regulators,” IEEE Transactions on Nuclear Science, vol. 54, no. 4, pp. 1327-1334, Aug. 2007.
[25]A. Kabbani and A. J. Al-Khalili, “Estimation of ground bounce effects on CMOS circuits,” IEEE Transactions on Components and Packaging Technologies, vol. 22, no. 2, pp. 316-325, June 1999.
[26]Jiann-Jong Chen, Fong-Cheng Yang, Chien-Chih Lai, Yuh-Shyan Hwang, and Ren-Guey Lee, “A high-efficiency multimode Li–Ion battery charger with variable current source and controlling previous-stage supply voltage,” IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2469-2478, July 2009.
[27]M. S. Lu, B. H. Hwang, J. J. Chen, and Y. S. Hwang, “A sub-l V voltage-mode DC-DC buck converter using PWM control technique,” in IEEE International Conference of Electronic Devices and Solid-State Circuits, 2010, pp. 1-4, 15-17.
[28]Y. Hu and M. M. Jovanovic, “LED driver with self-adaptive drive voltage,” IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 3116-3125, Nov. 2008.
[29]Yuh-Shyan Hwang and Ho-Cheng Lin, “A new CMOS analog front end for RFID tags,” IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2299-2307, July 2009.
[30]S. Rao Patri and K. S. R. Krishna Prasad, “High accuracy LDO regulator with fast transient response,” in TENCON, 2008, pp. 1-5.
[31]Wing Yan Leung, Tsz Yin Man, and Mansun Chan, “A high-power-LED driver with power-efficient LED-current sensing circuit,” in European Solid-State Circuits Conference, 2008, pp. 354-357.
[32]In-Hwan Oh, “An analysis of current accuracies in peak and hysteretic current controlled power LED drivers,” in Applied Power Electronics Conference and Exposition, 2008, pp. 572-577.
[33]Seok-in Hong, Jin-Wook Han, Dong-Hee Kim, and Oh-Kyong Kwon, “A double-loop control LED backlight driver IC for medium-sized LCDs,” in IEEE International Solid-State Circuits Conference, 2010, pp. 116-117.
[34]Yang Yuan, Song Zhenghua, and Gao Yong, “A white LED driver based on dual mode switch dimming,” in Symposium on Photonics and Optoelectronics, 2009, pp. 1-4.
[35]Jiaying Lu and Xiaobo Wu, “A novel multiple modes PWM controller for LEDs,” in IEEE International Symposium on Circuits and Systems, 2009, pp. 1767-1770.
[36]Jang-Su Kim, Yong-Kyu Lee, Jee-Sue Lee, Young-Kyu Shin, Jung-Hyun Tark, Keun-Chul Ryu, and Byung-Do Yang, “A fast-switching current-pulse driver for LED backlight,” in IEEE International Symposium on Circuits and Systems, 2009, pp. 1775-1778.
[37]Yuan Yao, Yin Shi, and F. F. Dai, “A novel low-power input-independent MOS AC/DC charge pump,” in IEEE International Symposium on Circuits and Systems, 2005, pp. 380-383.
[38]P. Hazucha, T. Karnik, B. A. Bloechel, C. Parsons, D. Finan, and S. Borkar, “Area-efficient linear regulator with ultra-fast load regulation,” IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 933-940, Apr. 2005.
[39]M. Loikkanen and J. Kostamovaara, “A capacitor-free CMOS low-dropout regulator,” in IEEE International Symposium on Circuits and Systems, 2007, pp. 1915-1918.
[40]R. J. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio, “Full on-fhip CMOS low-dropout voltage regulator,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 9, pp. 1879-1890, Sept. 2007.
[41]Wei Chen, Wing-Hung Ki, and P. K. T. Mok, “Dual-loop feedback for fast low dropout regulators,” in Power Electronics Specialists Conference, 2001, pp. 1265-1269.
[42]M. M. Martins and J. A. S. Dias, “CMOS shunt regulator with bandgap reference for automotive environment,”in Proc. Circuits, Devices and Systems, 1994, pp. 157-161.
[43]Xiaoru Xu and Xiaobo Wu, “High dimming ratio LED driver with fast transient boost converter,” in Power Electronics Specialists Conference, 2008, pp. 4192-4195.
[44]Lin Ying-yan, Zhang Jing, Zou Xue-cheng, and Li Wei, “An efficiency-enhanced low dropout linear HB LED driver for automotive application,” in IEEE International Conference on Electron Devices and Solid-State Circuits, 2008, pp. 1-4.
[45]Chi-Hao Wu and Chern-Lin Chen, “High-efficiency current-regulated charge pump for a white LED driver,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 10, pp. 763-767, Oct. 2009.
[46]盧銘祥,使用脈波寬度調變與磁滯電壓平方控制技術之1V以下直流-直流降壓轉換器,碩士論文,國立臺北科技大學電腦與通訊研究所,台北,2010。
[47]Philips Semiconductors Product Specification, Philips Semiconductors Inc., Sunnyvale, California, 1997, TL431C.
[48]Renesas Technology Datasheet, Hitachi Ltd. Inc., Tokyo, Japan, 2002, HA17431P.
[49]J. J. Chen, B. H. Hwang and Y. S. Hwang, “A dual-loop shunt regulator using current-sensing feedback techniques,” Microelectron. J., vol. 41, no. 12, pp. 840-844, Dec. 2010.
[50]B. Sahu and G. A. Rincon-Mora, “An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 2, pp. 312-321, Feb. 2007.
[51]S. K. Mishra and K. D. T. Ngo, “Dynamic characterization of the synthetic ripple modulator in a tightly regulated distributed power application,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1164-1173, Apr. 2009.
[52]Jiann-Jong Chen, Fong-Cheng Yang, and Chih-Chiang Chen, “A new monolithic fast-response buck converter using spike-reduction current-sensing circuits,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1101-1111, Mar. 2008.
[53]T. Brusev, P. Goranov, and M. Hristov, “Buck converter for low power applications,” in Conf. Microelectronics, 2008, pp. 447-450.
[54]Yi-Hwa Liu, Chern-Lin Chen, and Rong-Jie Tu, “A novel space-vector current regulation scheme for a field-oriented-controlled induction motor drive,” IEEE Transactions on Industrial Electronics, vol. 45, no. 5, pp. 730-737, May 1998.
[55]A. Santolaria, “Effects of switching frequency modulation on the power converter''s output voltage,” IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2729-2737, July 2009.
[56]Jianping Xu, Guohua Zhou, and Mingzhi He, “Improved digital peak voltage predictive control for switching DC-DC converters,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3222-3229, Aug. 2009.
[57]Yen-Shin Lai and Chia-An Yeh, “Predictive digital-controlled converter with peak current-mode control and leading-edge modulation,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1854-1863, June 2009.
[58]C. M. Liaw, S. J. Chiang, C. Y. Lai, K. H. Pan, G. C. Leu and G. S. Hsu, “Modeling and controller design of a current-mode controlled converter,” IEEE Transactions on Industrial Electronics, vol. 41, no. 2, pp. 231-240, Feb. 1994.
[59]Chi Yat Leung, P. K. T. Mok, Ka Nang Leung, and M. Chan, “An integrated CMOS current-sensing circuit for low-Voltage current-mode buck regulator,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 7, pp. 394-397, July 2005.
[60]Yu-Huei Lee, Shih-Jung Wang, Chun-Yu Hsieh, and Ke-Horng Chen, “Current mode DC-DC buck converters with optimal fast-transient control,” in International Symposium on Circuits and Systems, 2008, pp. 3045-3048.
[61]J. J. Chen, B. H. Hwang, Y. C. Jhang and Y. S. Hwang, “A new fast-response buck converter using accelerated pulse-width-modulation techniques,” International Journal of Circuit Theory and Applications, Nov. 2011.
[62]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell: MA: Kluwer, 2001.
[63]E. Lefeuvre, D. Audigier, C. Richard, and D. Guyomar, “Buck-boost converter for sensorless power optimization of piezoelectric energy harvester,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 2018-2025, Sept. 2007.
[64]Yanzhao Ma, Hongyi Wang, Guican Chen, and Fan Qu, “A novel method for smooth transition in step-up/step-down DC-DC converter,” in Conf. Electron Devices and Solid-State Circuits, 2009, pp. 95-98.
[65]C. Restrepo, J. Calvente, A. Cid-Pastor, A. E. Aroudi, and R. Giral, “A noninverting buck–boost DC-DC switching converter with high efficiency and wide bandwidth,” IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 2490-2503, Sept. 2011.
[66]R. Paul and D. Maksimovic, “Smooth transition and ripple reduction in 4-switch non-inverting buck-boost power converter for WCDMA RF power amplifier,” in IEEE International Symposium on Circuits and Systems, 2008, pp. 3266-3269.
[67]Huan-Jen Yang, Ke-Horng Chen, and Yung-Pin Lee, “Feed-forward pulse width modulation for high line regulation buck or boost converters,” in IEEE International Symposium on Circuits and Systems, 2007, pp. 785-788.
[68]H. F. Ma and F. Zhou, “A full on-chip low-dropout linear regulator with enhanced line, load regulation,” in Conf. Electron Devices and Solid-State Circuits, 2008, pp. 1-4.
[69]Po-Yu Kuo, Dian Zhou, and Zhi-Ming Lin, “A low-dropout regulator with low ESR, low line regulation and high currency efficiency using low output-resistance voltage buffer,” in Conf. Electron Devices and Solid-State Circuits, 2007, pp. 473-476.
[70]P. Midya, P. T. Krein, and M. F. Greuel, “Sensorless current mode control-an observer-based technique for DC-DC converters,” IEEE Transactions on Power Electronics, vol. 16, no. 4, pp. 522-526, July 2001.
[71]T. A. Smith, S. Dimitrijev, and H. B. Harrison, “Controlling a DC-DC converter by using the power MOSFET as a voltage controlled resistor,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 47, no. 3, pp. 357-362, Mar. 2000.
[72]Cheung Fai Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[73]Cheung Fai Lee and P. K. T. Mok, “On-chip current sensing technique for CMOS monolithic switch-mode power converters,” in IEEE International Symposium on Circuits and Systems, 2002, pp. V-265-V-268.
[74]Yu-Huei Lee, Yao-Yi Yang, Ke-Horng Chen, Ying-Hsi Lin, Shih-Jung Wang, Kuo-Lin Zheng, Po-Fung Chen, Chun-Yu Hsieh, Yu-Zhou Ke, Yi-Kuang Chen, and Chen-Chih Huang, “A DVS Embedded Power Management for High Efficiency Integrated SoC in UWB System,” IEEE Journal of Solid-State Circuits, vol. 45, no. 11, pp. 2227-2238, Nov. 2010.
[75]Wan-Rone Liou, Mei-Ling Yeh, and Yueh Lung Kuo, “A high efficiency dual-mode buck converter IC for portable applications,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 667-677, Mar. 2008.
[76]D. A. Johns, Analog Integrated Circuit Design. New York: AWiley-Interscience, 1997.
[77]B. Sahu and G. A. Rincon-Mora, “A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable applications,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 443-452, Mar. 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top