跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧涵中
研究生(外文):Han-Chung Teng
論文名稱:應用於攜帶式電子設備之通用型非接觸式充電平台
論文名稱(外文):Design of an universal contactless charging platform for portable devices
指導教授:孫卓勳孫卓勳引用關係
指導教授(外文):Jwo-Shiun Sun
口試委員:賴柏洲林漢年程光蛟
口試委員(外文):Po-Chou LaiHan-Nien LinKuang-Chiao Cheng
口試日期:2012-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:103
中文關鍵詞:非接觸式充電平台無線功率傳輸陣列線圈結構
外文關鍵詞:contactless charging platformwireless power transmissionarray structure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文以無線功率傳輸原理設計一非接觸式充電平台,將可對行動電話或其他電子裝置進行充電。充電平台和電子裝置間是採用電磁感應方式耦合,並藉由繞線式線圈達到非接觸式功率傳輸,充電平台使用霍爾元件及磁簧開關來達到低待機功率損耗。
本篇論文首先比較感應線圈各參數對於磁場分布之影響,歸納出最佳的陣列線圈結構,並以此原則設計的線圈作為單位陣列線圈,再以此線圈為基準並延伸形成陣列結構。別於以往的非接觸式充電系統,本論文之陣列結構除了保有原系統的傳輸效率之外並能夠提升電子設備擺放之範圍,也能提升電子產品在使用上之便利性。經由實測驗證,當感應線圈間隙等於2mm且平行位移等於0mm時,次級側經由電壓調整電路輸出直流電壓為穩定5V。次級側最大輸出功率可達1.6W,最大傳輸效率為41%,且次級線圈平行位移6mm內,其傳輸效率仍可維持在40%左右。最後可透過設計適當的次級側電路,以滿足不同行動裝置的充電需求。


This thesis proposes an universal contactless charging platform, which allowed cell-phone or other mobile devices placed and charged. By wound-wire structure and magnetic coupling, wireless power transmission could be achieved between platform and mobile device. The Hall-sensor and reed switch is used to achieve low standby power consumption in the charging system.
This thesis started from the parameters of induction coil for the magnetic field distribution, and optimize the design principal. With this principle, the coil could be designed as an unit array coil, and extended it to compose array structure. Different from the other contactless charger, array structure not only enhance the sensing range but also increase the use of convenience. The experimental results show that the output voltage is 5V when the induction coil gap is 2mm and displacement is 0mm. The maximum power output is 1.6W and a maximum transmission efficiency of 41%. The transmission efficiency maintained above 40%, when the secondary coil displacement less than 6mm. By designing appropriate secondary-side circuits to meet the charging requirements of different types of mobile device.


中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 5
1.3 研究方法 8
1.4 論文架構 9
第二章 非接觸式功率傳輸原理與系統架構 11
2.1 電磁理論 11
2.1.1 安培定律 11
2.1.2 比爾沙瓦定律 12
2.1.3 法拉第定律 13
2.1.4 馬克斯威爾方程式 14
2.1.5 邊界條件 15
2.2 非接觸式充電之系統架構 17
2.3 電感與感應耦合線圈 18
2.3.1 自感與自感器 19
2.3.2 互感與互感器 20
2.4 感應耦合線圈之非理想效應 21
2.4.1 集膚效應.. 22
2.4.2 接近效應 23
2.5 諧振電路 24
2.5.1 .RLC串聯諧振電路 25
2.5.2 .RLC並聯諧振電路 28
2.6 磁性材料 30
第三章 感應耦合結構與參數設計 32
3.1 概述 32
3.2 感應線圈設計流程 34
3.3 線圈形狀大小 37
3.4線圈匝數 40
3.5 銅線寬度 42
3.5.1 銅箔厚度、線寬和電流關係 43
3.5.2 銅線寬度探討 44
3.6 銅線間距 47
3.7感應線圈設計準則 49
3.8 製作初級側與次級側線圈 51
3.8.1 製作初級側線圈 51
3.8.2 製作初級側陣列線圈結構 53
3.8.3 製作初級側陣列線圈平台 57
3.8.4 製作次級側線圈 58
3.9 鐵磁性材料的應用 59
第四章 電路設計 62
4.1 概述 62
4.2 功能設計 64
4.2.1 霍爾元件 64
4.2.2 磁簧開關 65
4.2.3 .LED指示燈 66
4.3 諧振電容 67
4.3.1 初級側諧振電容設計 67
4.3.2 次級側諧振電容設計 68
4.4 初級側電路設計 71
4.4.1 半橋驅動電路 71
4.4.2 半橋轉換器 73
4.5 次級側電路設計 78
4.5.1 整流電路 79
4.5.2 濾波電路 80
4.5.3 電壓調整電路 81
第五章 硬體製作與實驗結果 84
5.1 概述 84
5.2 硬體製作 84
5.2.1 初級側硬體製作 84
5.2.2 次級側硬體製作 86
5.3 實驗結果 88
5.3.1 系統量測條件 88
5.3.2 實驗結果量測 90
5.3.3 待機功率損耗和最大輸出功率實測 91
5.3.4 線圈間隙和位移改變之輸出功率實測 92
5.3.5 線圈間隙和位移改變之傳輸效率實測 94
第六章 結論與未來展望 96
6.1 結論 96
6.2 未來展望 97
參考文獻 98


參考文獻

[1]Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, Jun. 2003.
[2]B. Choi, H. Cha, J. Noh, and Sangkyu Park, “A new contactless battery charger for portable telecommunication/compurng electronics,” in Proc. Int. Conf. Consumer Electron., Piscataway, Jun. 2001, pp. 58-59.
[3]H. L. Li , A. P. Hu, G. A. Covic, and C. S. Tang, “A new primary power regulation method for contactless power transfer,” in Proc. Int. Conf. Industrial Technology, Gippsland, Feb. 2009, pp. 1-5.
[4]C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst., vol. 57, no. 7, pp. 536-540. Jul. 2010.
[5]D. Kurschner and C. Rathge, “Contactless energy transmission systems with improved coil positioning flexibility for high power applications,” in Proc. Power Electron. Specialists Conf., Rhodes, Jun. 2008, pp. 4326-4332.
[6]S. H. Lee and R. D. Lorenz, “Development and validation of model for 95% efficiency, 220W wireless power transfer over a 30cm air-gap,” in Proc. Energy Conversion Congress and Exposition, Atlanta, Sep. 2010, pp. 885-892.
[7]T. S. Chan and C. L. Chen, “LLC resonant converter for wireless energy transmission system with PLL control,” in Proc. Int. Conf. Sustainable Energy Technologies, Singapore, Nov. 2008, pp. 136-139.
[8]W. Lim, J. Nho, B. Choi, and T. Ahn, “Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” in Proc. Power Electron. Specialists Conf., Cairns, Jun. 2002, pp. 579-584.
[9]Y. W. Zou et al., “Current research situation and developing tendency about wireless power transmission,” in Proc. Int. Conf. Electrical and Control Engineering, Wuhan, Jun. 2010, pp. 3507-3511.


[10]C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[11]P. Meyer, P. Germano, and Y. Perriard, “Modelling and design of a contactless energy transfer system for a notebook battery charger,” in Proc. Int. Conf. Electrical Machines, Rome, Sep. 2010, pp. 1-6.
[12]G. A. J. Elliott, S. Raabe, G. A. Covic, and J. T. Boys, “Multiphase pickups for large lateral tolerance contactless power-transfer systems,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1590-1598, May 2010.
[13]J. Sallan, J. L. Villa, A. Llombart, and J. F. Sanz, “Optimal design of ICPT systems applied to electric vehicle battery charge,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2140-2149, Jun. 2009.
[14]A. P. Hu, C. Liu, and H. L. Li, “A novel contactiess battery charging system for soccer playing robot,” in Proc. Int. Conf. Mechatronics and Machine Vision in Practice, Auckland, Dec. 2008, pp. 646-650.
[15]J. O. Mur-Miranda et al., “Wireless power transfer using weakly coupled magnetostatic resonators,” in Proc. Energy Conversion Congress and Exposition, Atlanta, Sep. 2010, pp. 4179-4186.
[16]J. A. G. Akkermans, M. C. van Beurden, G. J. N. Doodeman, and H. J. Visser, “Analytical models for low-power rectenna design,” IEEE Antennas Wireless Propagat. Lett., vol. 4, pp. 187-190, Jun. 2005.
[17]C. H. K. Chin, Q. Xue, and C. H. Chan, “Design of a 5.8-GHz rectenna incorporating a new patch antenna,” IEEE Antennas Wireless Propagat. Lett., vol. 4, pp. 175-178, Jun. 2005.
[18]C. Alippi and C. Galperti, “An adaptive system for optimal solar energy harvesting in wireless sensor network nodes,” IEEE Trans. Circuits Syst., vol. 55, no. 6, pp. 1742-1850, Jul. 2008.
[19]X. Z. Jian and H. Z. Yu, “A novel wireless charging system for movable telephone with printed-circuit-board windings of different structure and shape respectively,” in Proc. Int. Conf. Electrical Machines and Systems, Seoul, Oct. 2007, pp. 1283-1285.


[20]X. Liu and S. Y. R. Hui, “An analysis of a double-layer electromagnetic shield for a universal contactless battery charging platform,” in Proc. Power Electron. Specialists Conf., Recife, Jun. 2005, pp. 1767-1772.
[21]S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
[22]J. Achterberg, E. A. Lomonova, and J. D. Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, May 2008.
[23]P. Meyer, P. Germano, M. Markovic, and Y. Perriard, “Design of a contactless energy transfer system for desktop peripherals,” in Proc. Energy Conversion Congress and Exposition, Atlanta, Sep. 2010, pp. 2253-2258.
[24]X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, Jan. 2007.
[25]X. Liu, P.W. Chan, and S. Y. R. Hui, “Finite element simulation of a universal contactless battery charging platform,” in Proc. Applied Power Electronics Conference and Exposition, Austin, Mar. 2005, pp. 1927-1932.
[26]E. Waffenschmidt and T. Staring, “Limitation of inductive power transfer for consumer applications,” in Proc. European Conference on Power Electronics and Applicatio, Barcelona, Sep. 2009, pp. 1-10.
[27]C. L. W. Sonntag, J. L. Duarte, and A. J. M. Pemen, “Load position detection and validation on variable-phase contactless energy transfer desktops,” in Proc. Energy Conversion Congress and Exposition, San Jose, Sep. 2009, pp. 1818-1825.
[28]X. Liu and S. Y. R. Hui, “Optimal design of a hybrid winding structure for planar contactless battery charging platform,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 455-463, Jan. 2008.
[29]X. Liu and S. Y. R. Hui, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, Nov. 2007.

[30]C. L. W. Sonntag, E. A. Lomonova, J. L. Duarte, and A. J. A. Vandenput, “Specialized receivers for three-phase contactless energy transfer desktop applications,” in Proc. European Conference on Power Electronics and Applicatio, Aalborg, Sep. 2007, pp. 1-11.
[31]W. Zhou and H. Ma, “Winding structure and circuit design of contactless power transfer platform,” in Proc. Industrial Electronics, Orlando, Nov. 2008, pp. 1063-1068.
[32]D. K. Cheng, Field and Wave Electromagnetics (Second Edition), Addison-Wesley, United States of America, 1989.
[33]D. J. Thrimawithana and U. K. Madawala, “A primary side controller for inductive power transfer systems,” in Proc. Int. Conf. Industrial Technology, Vina del Mar, Mar. 2010, pp. 661-666.
[34]C. H. Lai, C. S. Wang, H. Y. Yang, and T. R. Chen, “Design and implement of contactless charger with battery management, “ in Proc. Electron Devices and Solid-State Circuits, Tainan, Dec. 2007, pp. 1043-1064.
[35]C. Y. Chao et al., “Study of Contactless Power Supply for Wireless Mouse,” in Proc. Int. Conf. Power Electronics and Drive Systems, Taipei, Nov. 2009, pp. 157-159.
[36]W. P. Choi, W. C. Ho, X. Liu, and S. Y. R. Hui, “Bidirectional communication techniques for wireless battery charging systems & portable consumer electronics,” in Proc. Applied Power Electronics Conference and Exposition, Palm Springs, Feb. 2010, pp. 2251-2257.
[37]R. Steiner, P. K. Steimer, F. Krismer, and J.W. Kolar, “Contactless energy transmission for an isolated 100W gate driver supply of a medium voltage converter,” in Proc. Industrial Electronics, Porto, Nov. 2009, pp. 302-307.
[38]T. L. Floyd, Electric Circuits Fundamentals (Sixth Edition), Pearson Education, New Jersey, 2004.
[39]K. K. Shyu, K. W. Jwo, Z. Y. Chen, and C. H. Lo, “Inductive power supply system with fast full- duplex information rate device,” in Proc. EuroCon 2007, Warsaw, Sep. 2007, pp. 1382-1386.
[40]C. S. Lin et al., “Model of contactless power transfer system for linear track,” in Proc. Int. Conf. Power Electronics and Drive Systems, Taipei, Nov. 2009, pp. 1075-1079.
[41]S. Valtchev, B. Borges, K. Brandisky, and J. B. Klaassens, “Resonant contactless energy transferwith improved efficiency,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 685-699, Mar. 2009.
[42]K. C. Wang et al., “Study of applying contactless power transmission system to battery charge,” in Proc. Int. Conf. Power Electronics and Drive Systems, Taipei, Nov. 2009, pp. 257-262.
[43]Y. H. Liu, S. C. Wang, and R. C. Leou, “A novel primary-side controlled contactless battery charger,” in Proc. Int. Conf. Power Electronics and Drive Systems, Bangkok, Nov. 2007, pp. 320-324.
[44]W. X. Zhong, X. Liu, and S. Y. R. Hui, “Analysis on a single-layer winding array structure for contactless battery charging systems with free-positioning and localized charging features,” in Proc. Energy Conversion Congress and Exposition, Atlanta, Sep. 2010, pp. 658-665.
[45]M. Dockhorn, D. Kurschner, and R. Mecke, “Contactless power transmission with new secondary converter topology,” in Proc. Power Electronics and Motion Control Conference, Poznan, Sep. 2008, pp. 1734-1739.
[46]C. G. Kim et al., “Design of a contactless battery charger for cellular phone,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1238-1247, Dec. 2001
[47]S.C. Mukhopadhyay, G. S. Gupta, and B.J. Lake, “Design of a contactless battery charger for micro-robots,” in Proc. Instrumentation and Measurement Technology Conference Proceedings, Victoria, May 2008, pp. 985-950.
[48]H. Ma and L. Ma, “An improved multi-layer pcb winding and circuit design for universal contactless charging platform,” in Proc. Industrial Electronics Society, Glendale, Nov. 2010, pp. 1763-1768.
[49]N. Hemche and A. Jaafari, “Wireless transmission of power using a PCB transformer with mobile secondary,” in Proc. Electrotechnical Conference, Ajaccio, May 2008, pp. 629-634.
[50]S. S. Mohan, M. D. M. Hershenson, S. P. Boyd, and T. H. Lee, “Simple accurate expressions for planar spiral inductances,” IEEE Journal of Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct. 1999.
[51]B. Choi, et al., “Design and Implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, Feb. 2004.
[52]Y. P. Su, X. Liu, and S. Y. R. Hui, “Mutual inductance calculation of movable planar coils on parallel surfaces,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1115-1124, Apr. 2009.
[53]C. H. Hu et al., “Development of a universal contactless charger for handheld devices,” in Proc. International Symposium on Industrial Electronics, Cambridge, Jun. 2008, pp. 99-104.
[54]C. Fernandez, R. Prieto, O. Garcia, and J. A. Cobos, “Coreless magnetic transformer design procedure,” in Proc. Power Electronics Specialists Conference, Recife, Jun. 2005, pp. 596-601.
[55]C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004.
[56]萬泰麟,非接觸式感應充電技術應用於小家電裝置之研究,碩士論文,國立成功大學,台南,2007。
[57]賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,碩士論文,國立成功大學,台南,2009。
[58]李正男,非接觸式充電平台應用於行動裝置之研究,碩士論文,國立臺北科技大學,台北,2011。



電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top