跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王瑞憲
研究生(外文):Rui-Xian Wang
論文名稱:應用在X頻帶CMOS射頻積體電路的設計與實現
論文名稱(外文):Design and Implementation of CMOS RFICs for X-band Applications
指導教授:王紳
口試委員:蔡昆宏蔣孟儒
口試日期:2012-06-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:48
中文關鍵詞:主動式電感威爾金森功率分波器低雜訊放大器X頻帶應用
外文關鍵詞:Active inductorWilkinson power dividerlow noise amplifier (LNA)X-band applications
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中提出操作在X頻帶一個微型化利用主動式電感的威爾金森功率分波器以及一個三級電流再利用的低雜訊放大器。在本篇中所提出來的這兩個電路皆使用TSMC 0.18-μm RF CMOS製程來實現。首先,以高自振頻率的主動式電感應用到集總式威爾金森功率分波器克服了被動電感在晶片上的限制。藉由主動式電感運用到電路上時,很明顯的可以同時達到縮小電路尺寸的特性。量測結果顯示在中心頻率有2 dB的插入損耗以及大於15 dB的反射損耗,同時在輸出端之間維持良好的隔離度。此集總式威爾金森功率分波器包含探測片的面積為0.65 mm×0.61 mm。其次也製造了一個具有低功率消耗、高增益特性,採用三級共源級架構電流再利用技術的低雜訊放大器。在源極和閘極之間連接一個大電阻值電阻來防止體極效應並減少雜訊指數。在此所提出來的低雜訊放大器模擬結果中,操作在11 GHz時可以達到22 dB的功率增益、3.2 dB的雜訊指數,以及輸入和輸出端的反射損耗皆大於15 dB,而在1.3伏和1.1伏的電源供應下只消耗了5mW。此電流再利用技術低雜訊放大器包含探測片的晶片面積為0.9 mm×0.65 mm。

In this thesis, a miniaturized Wilkinson power divider with active inductors, and a three-stage current-reuse LNA for X-band applications are presented. These proposed circuits are fabricated in a standard TSMC 0.18-μm RF CMOS process technology. Firstly, a lumped Wilkinson power divider with high self-resonant frequency active inductors is proposed to overcome the limitations of on-chip passive inductors. By using the active inductors for the circuit implementation, a significant size reduction can be achieved. The measured results show an insertion loss 2 dB and a return loss better than 15 dB at the center frequency while maintaining good isolation between the output ports. The area of the lumped Wilkinson power divider is 0.65mm×0.61mm including pads. Secondly, a current-reuse LNA, which adopts three-stage common source architecture, with high gain and low power consumption performance is also fabricated. A resistor with large resistance is connected between source and body node to prevent body effect and reduce noise figure. The simulated results of proposed LNA achieves 22 dB of power gain, 3.2 dB of noise figure, and both input and output return loss are better than 15 dB at 11 GHz, while consuming 5 mW from 1.3 V and 1.1 V supply. The chip area of the current-reuse LNA is 0.9 mm×0.65 mm including pads.

摘要 I
Abstract II
誌謝 III
Content IV
List of Figures VI
List of Tables VIII
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Thesis Origination 2
Chapter 2 An Overview of Active Inductors 3
2.1 Quality Factor 3
2.2 Principles of Gyrator-C Active Inductors 4
2.3 Basic Active Inductors 6
2.4 An Improved Active Inductor with Cascode Architecture 7
2.5 An Improved Active Inductor with Regulated Cascode Architecture 9
Chapter 3 Implementation of Wilkinson Power Divider with Active Inductors 14
3.1 Lumped Wilkinson Power Divider 15
3.2 Wilkinson Power Divider with Active Inductors for X-band Application 16
3.3 Experiment Results 19
Chapter 4 Design and Measurement of a Current-Reuse Low Noise Amplifier 24
4.1 Typical Current-Reuse LNA Topology 25
4.2 The Presented Three Stages Current-Reuse Low Noise Amplifier Architecture 26
4.2.1 Input Impedance Matching 27
4.2.2 Input Stage Noise Analysis 28
4.2.3 NF Improvement with RBS 31
4.2.4 Gain Analysis 32
4.3 Simulation and Experiment Results 33
Chapter 5 Conclusion 41
Reference 43



[1]A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, and W. H. Haydl, “Compact single-chip W-band FMCW radar modules for commercial high-resolution sensor applications,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 2995–3001, Dec. 2002.
[2]V. Jain, F. Tzeng, L. Zhou, and P. Heydari, “A single-chip dual-band 2229 GHz / 7781 GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3469–3485, Dec. 2009.
[3]M. Zannoth et al., “A single-chip Si-bipolar 1.6 GHz VCO with integrated-bias network,” IEEE Trans. Microw. Theory Tech., vol. 48, pp. 203–205, Feb. 2000.
[4]I. Kipnis, S. Chiu, M. Loyer, J. Carrigan, J. Rapp, P. Johansson, D. Westberg, and J. Johansson, “A 900MHz UHF RFID reader transceiver IC,” in IEEE ISSCC Dig. Tech. Papers, Jan. 2007, pp. 214–215.
[5]W. Wang, S. Lou, K. W. C. Chui, S. Rong, C. F. Lok, H. Zheng, H. Chan, S. Man, H. C. Luong, V. K. Lau, and C. Tsui, “A single-chip UHF RFID reader in 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 43, pp. 1741–1754, Aug. 2008.
[6]L. Ye, H. Liao, F. Song, J. Chen, C. Li, J. Zhao, R. Liu, C. Wang, C. Shi, J. Liu, R. Huang, and Y.Wang, “A single-chip CMOS UHF RFID reader transceiver for Chinese mobile applications,” IEEE J. Solid-State Circuits, vol. 45, no. 7, pp. 1316–1329, Jul. 2010.
[7]R. Ahola, A. Aktas, J.Wilson, K. R. Rao, F. Jonsson, H. Isto, A. Brolin, T. Hakala, A. Friman, M. Tuula, J. Hanze, S. Martin, D.Wallner, Y. Guo, T. Lagerstam, L. Noguer, T. Knuuttila, P. Olofsson, and M. Ismail, “A single-chip CMOS transceiver for 802.11 a/b/g wireless LANs,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2250–2258, Dec. 2004.
[8]J. Zipper, C. Stoger, G. Hueber, R. Vazny, W. Schelmbauer, B. Adler, and R. Hagelauer, “A single-chip dual-band CDMA2000 transceiver in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2785–2794, Dec. 2007.
[9]H.D. Woblmuth, W. Simburger, “A High IP3 RF Receiver Chip Set for Mobile Radio Base Stations up to 2 GHz”, IEEE J. Solid-State Circuits, vol. 37, No. 7, pp. 1132-1 137, July 2001.
[10]U. Dasgupta, W. G. Yeoh, C. G. Tan, S. J. Wong, H. Mori, R. Singh, and M. Itoh, “A transmit/receive IF chip set for WCDMA mobiles in 0.35-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 11, pp. 2443–2452, Nov. 2002.
[11]T. Nagahori, K. Miyoshi, Y. Aizawa, Y. Kusachi, Y. Nukada, N. Kami, and N. Suzuki, “An analog front-end chip set employing an electro-optical mixed design on SPICE for 5-Gb/s/ch parallel optical interconnection,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1984–1991, Dec. 2001.
[12]M. Fukaishi, K. Nakamura, H. Heiuchi, Y. Hirota, Y. Nakazawa, H. Ikeno, H. Hayama, and M. Yotsuyanagi, “A 20-Gb/s CMOS multichannel transmitter and receiver chip set for ultra-high-resolution digital displays,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1611–1618, Nov. 2000.
[13]M. Wren and T. J. Brazil, “Experimental class-F power amplifier design using computationally efficient and accurate large-signal pHEMT model,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 5, pp. 1723–1731, May 2005.
[14]A. Bessemoulin, M. McCulloch, A. Alexander, D. McCann, S. Mahon, J. Harvey, “Compact K-band Watt-level GaAs PHEMT Power Amplifier MMIC with integrated ESD protection,” in 36th European Microwave Conf. Dig., Sep. 2006, pp. 517-520.
[15]Chow, Y.H., Yong, C.K., Lee, J., Lee, H.K., Thor, W.Y., Lee, K.Y., Tan, H.T., Liew, Y.Y. and Khoo, S.H., “A 3.3 V broadband linear power amplifier module for IEEE 802.16e (WIMAX) applications using E-mode pHEMT technology,” in 10th European Microwave Conf. Dig., Oct, 2007, pp. 387-390.
[16]K. H. Liang and Y. J. Chan, “A 18-μm dual-gate CMOS model for the design of 2.4 GHz low noise amplifier,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., Jun. 2006, pp. 353–356.
[17]W. R. Deal, M. Biedenbender, P. H. Liu, J. Uyeda, M. Siddiqui, and R. Lai, “Design and analysis of broadband dual-gate balanced low noise amplifiers,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2107–2115, Oct. 2007.
[18]M. V. Aust, A. K. Sharma, Y. C. Chen, and M. Wojtowicz, “Wideband dual-gate GaN HEMT low noise amplifier for front-end receiver electronics,” in Proc. CSIC Symp., Nov. 2006, pp. 89–92.
[19]S. E. Shih, W. R. Deal, D. M. Yamauchi, W. E. Sutton, Y. C. Chen, I. Smorchkova, B. Heying, M.Wojtowicz, and M. Siddiqui, “Design and analysis of ultra wideband GaN dual-gate HEMT low noise amplifiers,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2009, pp. 4.
[20]K. Hettak, G. A. Morin, and M. G. Stubbs, “Size reduction of a MMIC direct up-converter at 44 GHz in multilayer CPW technology using thin-film microstrip stubs loading,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3453–3461, Sep. 2006.
[21]G. E. Ponchak, A. Margomenos, and L. P. B. Katehi, “Low-loss CPW on low-resistivity Si substrates with a micromachined polyimide interface layer for RFIC interconnects,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 866–870, May 2001.
[22]J.-C. Chiu, C.-M. Lin, and Y.-H. Wang, “A 3-dB quadrature coupler suitable for PCB circuit design,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3521–3525, Sep. 2006.
[23]J. J. Xu, S. Keller, G. Parish, S. Heikman, U. K. Mishra, and R. A. York, “A 3-10 GHz GaN-based flip-chip integrated broad-band power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2573–2578, Dec. 2000.
[24]J. Zeng, C. H.Wang, and A. J. Sangster, “Theoretical and experimental studies of flip-chip assembled high-Q suspended MEMS inductors,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1171–1181, Jun. 2007.
[25]A. Jentzsch and W. Heinrich, “Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 871–878, May 2001.
[26]J. W. M. Rogers, F. F. Dai, M. S. Cavin, and D. G. Rahn, “A fully integrated multi-band ΔΣ fractional-N frequency synthesizer for a MIMO WLAN transceiver RFIC,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 678–689, Mar. 2005.
[27]X. Geng, X. Yu, F. Dai, J. D. Irwin, and R. C. Jaeger, “24-bit 5.0 GHz direct digital synthesizer RFIC with direct digital modulations in 0.13-μm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 944–954, May 2010.
[28]S. Tadjpour, E. Cijvat, E. Hegazi, and A. A. Abidi, “A 900-MHz dual conversion IF GSM receiver in 0.35-μm CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1992–2002, Dec. 2001.
[29]O. Charlon, M. Locher, H. A. Visser, D. Duperray, J. Chen, M. Judson, A. L. Landesman, C. Hritz, U. Kohlschuetter, Y. Zhang, C. Ramesh, A. Daanen, M. Gao, S. Haas, V. Maheshwari, A. Bury, G. Nitsche, A. Wrzyszcz, W. R. White, H. Bonakdar, R. E. Waffaoui, and M. Bracey, “A low-power high-performance SiGe BICMOS 802.11 a/b/g transceiver IC for cellular and bluetooth co-existence applications,” IEEE J. Solid-State Circuits, vol. 41, no. 7, pp. 1503–1512, Jul. 2006.
[30]M. Locher, J. Kuenen, A. Daanen, H. Visser, B. H. Essink, P. P. Vervoort, R. Kopmeiners, W. Alkema, W. Redman-White, R. Balmford, and R. El Waffaoui, “A versatile, low power, high performance BiCMOS MIMO/diversity direct conversion transceiver IC for WiBro/WiMAX (802.16e),” IEEE J. Solid-State Circuit, vol. 43, no. 8, pp. 1731–1740, Aug. 2008.
[31]B. Piernas, K. Nishikawa, K. Kamogawa, T. Nakagawa, and K. Araki, “High-Q factor three-dimensional inductors,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 1942–1949, Aug. 2002.
[32]H. Lakdawala, X. Zhu, H. Luo, S. Santhanam, L. R. Carley, and G. K. Fedder, “Micromachined high-Q inductors in a 0.18 m copper interconnect low-k dielectric CMOS process,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 394–403, Mar. 2002.
[33]C.Y. Lee, T.S. Chen, J.D.S. Deng, C.H. Kao, “A Simple Systematic Spiral Inductor Design With Perfected Q Improvement for CMOS RFIC Application,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 523-528, Feb. 2005
[34]K. Manetakis et al., “Wideband CMOS analog cells for video and wireless communications,” in Proc. 3rd IEEE Int. Electronics Circuits Systems Conf., vol. 1, Oct. 1996, pp. 227–230.
[35]Fei Yuan, CMOS Active Inductors and Transformers Principle, Implementation, and Applications, Springer, 2008.
[36]Zheng, Y., and Saavedra, C.E.: ‘Frequency response comparison of two common active inductors’, Prog. Electromagn. Res. Lett., 2010, 13, pp. 113– 119.
[37]E. J. Wilkinson, “An N-way hybrid power divider,” IEEE Trans. Microw. Theory Tech., vol. 8, no. 1, pp. 116–118, Jan. 1960.
[38]D. M. Pozar, Microwave Engineering, 3rd Ed. New York: Wiley, 1998
[39]S. J. Parisi, “180 lumped element hybrid,” in IEEE MTT-S Int. Microw. Symp. Dig., 1989, pp. 1243–1246.
[40]L. H. Lu, Y. T. Liao, and C. R. Wu, “A miniaturized Wilkinson power divider with CMOS active inductors,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 775–777, Nov. 2005.
[41]S. Seo, N. Ryu, H. Choi and Y. Jeong, “Novel high-Q inductor using active inductor structure and feedback parallel resonance circuit,” in IEEE Radio Freq. Integr. Circuits Symp., Jun, 2007, pp. 467-470.
[42]K. Liang, C. Ho, C. Kuo and Yi-Jen Chan, “CMOS RF Band-Pass Filter Design Using the High Quality Active Inductor”, IEICE Trans. Electron., vol. E88-C, no. 12, pp. 2372-2376, Dec. 2005
[43]A. Galal, R.Pokharel, H. Kanay and K. Yoshida, “1-5 GHz Wideband Low Noise Amplifier using Active Inductor,” in Proc. IEEE International Conf. on Ultra-Wideband, vol. 1, pp. 1-4, 2010.
[44]H. Zhang, X. Fan, and E. S. Sinencio, “A low-power, linearized, ultrawideband LNA design technique,” IEEE J. Solid State Circuits, vol. 44, no. 2, pp. 320–330, Feb. 2009.
[45]F. Lee and A. Chandrakasan, “A BiCMOS ultra-wideband 3.1-10.6 GHz front-end,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1784–1790, Aug. 2006.
[46]Y.-T. Lin, H.-C. Chen, T. Wang, Y.-S. Lin, and S.-S. Lu, “3–10 GHz ultra-wideband low-noise amplifier utilizing Miller effect and inductive shunt-shunt feedback technique,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1832–1843, Sep. 2007.
[47]M. L. Edwards, and J. H. Sinsky, "A New Criterion for Linear 2-Port Stability Using a Single Geometrically Derived Parameter," IEEE Trans. Microw. Theory and Tech., vol. 40, no. 12, pp. 2303-2311, Dec. 1992.
[48]R. M. Weng, C. Y. Liu, and P. C. Lin, "A Low-Power Full-Band Low- Noise Amplifier for Ultra-Wideband Receivers," IEEE Trans. Microw. Theory Tech., vol. 58, 8, pp. 2077-2083, Aug. 2010.
[49]C. F. Liao, and S. I. Liu, "A Broadband Noise-Canceling CMOS LNA for 3.1-10.6 GHz UWB Receivers," IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329-339, Feb. 2007.
[50]Y. S. Lin, C. Z. Chen, H. Y. Yang, C. C. Chen, J. H. Lee, G. W. Huang, and S. S. Lu, "Analysis and Design of a CMOS UWB LNA with Dual-RLC Branch Wideband Input Matching Network," IEEE Trans. Microw. Theory Tech., vol. 57, no. 2, pp. 287-296, Feb. 2010.
[51]G. Sapone, and G. Palmisano, "A 3-10 GHz Low-Power CMOS Low- Noise Amplifier for Ultra- Wideband Communication," IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 678-686, Mar. 2011.
[52]A. Van Der Ziel, Noise in Solid-State Devices and Circuits. New York: Wiley, 1986.
[53]T.-K. Nguyen et al., “CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1433–1442, May 2004.
[54]J. Lu and F. Huang, “Comments on ‘CMOS low-noise amplifier design optimization techniques’,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 3155–3155, Jul. 2006.
[55]H.-H. Hsieh and L.-H. Lu, “Design of ultra-low-voltage RF frontends with complementary current reused architectures,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 7, pp. 1445–1458, Jul. 2007.
[56]Kuo-Jung Sun, Zuo-Min Tsai, Kun-You Lin, and Huei Wang, "A 10.8 GHz CMOS low-noise amplifier using parallel-resonant inductor," in IEEE MTT-S Int. Microw. Symp. Dig., June 2007, pp. 1795-1798.
[57]J. S. Walling, S. Shekhar, and D. J. Allstot, “A gm-Boosted Current-Reuse LNA in 0.18-μm CMOS,” in IEEE Radio Freq. Integr. Circuits Symp., pp. 613-616, 3-5 June 2007.
[58]Chin-Lung Yang; Tsung-Han Hsieh; Yi-Chyun Chiang, “A Novel Self-Biased Low Noise Amplifier with Current-Reused Technique for X-Band Applications,” in IEEE Microwave Conf., APMC, pp. 1667-1670, 2009.
[59]Terry Yao, Michael Q. Gordon, Keith K.W. Tang et al., “Algorithmic Design of CMOS LNAs and PAs for 60 GHz Radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊