跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 14:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏宗
研究生(外文):Bo-Zong Huang
論文名稱:應用於K頻帶CMOS射頻前端電路之設計與實現
論文名稱(外文):Design and Implementation of CMOS RFICs for K-band Front-End
指導教授:王紳
指導教授(外文):Sen Wang
口試委員:蔡昆宏蔣孟儒
口試日期:2012-06-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:73
中文關鍵詞:K頻帶前端電路九十度耦合器慢波傳輸線帶通濾波器雜訊拒斥低雜訊放大器
外文關鍵詞:K-bandFront-End90o couplerSlow-Wave Transmission LineBandpass FilterIR-LNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用台積電提供之CMOS 0.18微米製程設計一個K頻段的射頻前端電路,其中呈現的電路包含:干擾拒斥之低雜訊放大器、具三個傳輸零點之二階濾波器、使用高慢波係數之傳輸線設計的九十度耦合器。干擾拒斥之低雜訊放大器是由一個疊接低雜訊放大器結合一個干擾拒斥濾波器,而在干擾拒斥濾波器中,使用一種具有高品質因子、結合非對稱性抽頭式電感與電晶體的設計電路,我們稱之為半主動式電感,此設計電路所產生的負阻抗可以補償電路中的阻抗損耗。相同地,在二階三個零點濾波器的設計中,我們也使用了此半主動式電感產生負阻,以補償電路當中的阻抗損耗,並且在輸出與輸入端之間並聯一個電感,以達到三個傳輸零點的目的,讓此濾波器具有高選擇性的特性。最後,經由改變傳輸線的地平面結構,設計具有高Q值與高慢波系數之傳輸線,並將其應用於一個九十度耦合器的設計。

實測結果:干擾拒斥之低雜訊放大器的模擬值,在22.8GHz頻段的增益、雜訊和1dB增益壓縮點分別為10.46dB、4.73dB和-12.63dBm;而功率消耗方面,低雜訊放大器與拒斥濾波器一共消耗了14.13mW,並且在17.9GHz處呈現33.46dB的拒斥深度。再來,具三個傳輸零點之濾波器之實測結果, 在23.5GHz,輸入損耗、雜訊指數、1dB增益壓縮點和功率損耗分別為16.5dB、13.2dB、-3.5dBm和4.2mW;此濾波器反射損耗為13.2dB並且3-dB頻寬比為17%,傳輸零點的拒斥超過15.2 dB。相較於一般的帶通濾波器與干擾拒斥低雜訊放大器,使用改良後半主動電感,不但有效降低了帶通濾波器的輸入損耗,還讓低雜訊放大器的干擾拒斥濾波器有更好的拒斥功能。最後,使用慢波傳輸線技術的九十度耦合器展現面積微型化的特性,晶片面積只佔了0.352 mm2,在24GHz頻段相當於0.00225個平方波長。


This thesis aims to design a K-band RF front-end using a standard mixed-signal/RF 0.18um CMOS 1P6M process provided by TSMC. The presented circuits including an image/interference-reject low noise amplifier (IR-LNA), a second-order bandpass filter (BPF) with three transmission zeros, and a 90 degree coupler using high slow-wave transmission lines. The IR-LNA consists of a cascode LNA and an image/interference rejection filter. A Q-enhanced technique called semi-active inductor using a tapped-inductor and a NMOS transistor is proposed to improve the image rejection. In order to realize the Q-enhanced inductor, a negative resistance circuit is employed to compensate the resistive losses of inductors. Similarly, the Q-enhanced technique is also employed to reduce the resistive losses of the proposed 2nd BPF. Moreover, a feedback inductor is added between input and output ports to achieve three transmission zeros offering high selectivity. Finally, the 90 degree coupler using high slow-wave transmission lines with superior performances is presented. The characteristics of the guiding structure feature high Q factor and high slow-wave factor by changing the geometry in the ground plane.
Measured results: the measured gain, NF, and P1dB at 22.8GHz of the LNA are 10.46dB, 4.73dB, and -12.63dBm, respectively. The LNA including the notch filter consumes 14.13-mW power consumption. Furthermore, it achieves a 33.46-dB image/interference rejection at 17.9 GHz. The measured insertion loss, noise figure, P1dB, and power consumption of the 2nd BPF are 1.65dB, 13.2dB, -3.5dBm, and 4.2mW at 23.5 GHz. Additionally, the filter achieves a 13.2-dB return loss with a 17% 3-dB bandwidth, and the rejection levels at these transmission zeros are greater than 15.2dB. Compared with conventional image/interference rejection filters and bandpass filters, the two designs combined with the proposed semi-active inductors not only reduce the insertion loss in filters, but also show the better rejection levels. Finally, the 90 degree coupler using the proposed slow-wave transmission line technique shows a low-loss and miniaturized design. The compact area is 0.352 mm2, and the size is merely 0.00225 square wavelenth at 24GHz.

摘要………………………………………………i
Abstract…………………………………………iii
Table of Content………………………………v
List of Tables…………………………………viiI
List of Figures………………………………iX
Chapter 1 Introduction ....................... 1
1.1 Motivation ............................... 1
1.2 List of Contributions..................... 2
1.3 Thesis Origination ....................... 3
Chapter 2 Basic in RF Theory ................. 5
2.1 Definitions of Quality Factor ............ 5
2.2 RLC Series Resonant Circuits.............. 7
2.3 RLC Parallel Resonant Circuits ........... 9
2.4 Linearity in RF Circuits ................. 11
Chapter 3 A CMOS 90o Coupler using High Slow-Wave Transmission Lines ........................... 16
3.1 Transmission Lines in 0.18-um CMOS Technology .......................... 17
3.2 Slow-Wave Transmission Lines ............. 19
3.3 Miniaturized 90o Coupler ................. 26
3.4 Simulation and Measurement of the 90o Coupler ............................. 28
Chapter 4 A CMOS Bandpass Filter With Three Finite Transmission Zeros ........................... 32
4.1 Introduction ............................. 32
4.2 Design Methodology of The Active BPF ..... 34
4.3 Q-enhanced Inductor ...................... 39
4.4 Stability and Noise Consideration ................................ 42
4.5 Implementation and Measurement of the Filter ............................. 44
Chapter 5 A CMOS Low-Noise Amplifier Using Semi-Active Inductor Topology .............................49
5.1 Overview of CMOS LNA ..................... 49
5.2 Selection of Cascode Device .............. 51
5.3 The Problem of Interference /Image .......................... 53
5.4 Semi-active Image-rejection Filter ....... 56
5.5 Simulation and Measurement of the IR-LNA ..62
Chapter 6 Conclusion ......................... 66
Reference. ................................... 67
Pulication List............................... 73











[1] T. Maeda, and H. Yano, “Low-Power-Consumption Direct-Conversion CMOS Transceiver for Multi-Standard 5-GHz Wireless LAN Systems with Channel Bandwidths of 5–20 MHz,” IEEE JSSCC, vol. 41, no. 2, pp 375–383, Feb. 2006.
[2] H. Eric “A 5 GHz band CMOS low noise amplifier with a 2.5 dB noise figure,” in Systems, and Application Symp., Oct. 2001, pp. 224–227.
[3] R. Fujimoto, K. Kojima, “A 7-GHz 1.8-dB NF CMOS low-noise amplifier” IEEE JSSCC, vol.37, pp. 852–856, Jul. 2002.
[4] S. J. Fang, A. Bellaouar, “An Image-Rejection Down-Converter for Low-IF Receivers,” IEEE Microw. Theory Tech., vol. 53, no. 2, pp 478–487 Feb. 2005.
[5] G. Schultes. “DECT Transceiver Architectures: Superheterodyne or Direct Conversion,” in Univ. Vienna, IEEE Vehicular Tech. Conf., May. 1993, pp. 953–956.
[6] T. H. Lee, “5-GHz CMOS Wireless LANs,” IEEE Trans. on Microw. Theory Tech., vol. 50, no. 1, pp. 268–280, Jan. 2002.
[7] C. Baoyong, W. Zhihua, “A Superheterodyne Receiver Front-End with On-Chip Automatically Q-Tuned Notch Filters,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., vol.60, Feb. 2007, pp. 21–24.
[8] C. P. Yue, C. Ryu, J. Lau, “Physical modeling of spiral inductors on silicon
,” Trans. on IEEE Elec. Devices, vol. 47, no. 3, Mar. 2000.
[9] M. Pfost, H. M. Rein, “Modeling Substrate Effects in The Design of High Speed Si-Bipolar IC’s,” IEEE JSSCC, vol. 31, no. 10, pp. 1493–1501, Oct. 1996.
[10] C. P. Yue, and S. S. Wong “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s” in VLSI Circuits Symp., Jun. 1997, pp.85–86.
[11] C. P. Chang, and W. C. Chien, “Linearity Improvement of Cascode CMOS LNA Using A Diode Connected NMOS Transistor with A Parallel RC Circuit,” Prog. In Elect. Research C, Vol. 17, 29 38, pp. 201–211, Jul. 2010.
[12] R. Xu, L. Sun, and J. Wen, “A Highly Linear Wideband CMOS LNA Adopting Current Amplification and Distortion Cancellation,” IEEE SSIC, Oct. 2008, pp. 1512–1515.
[13] H. Yang, C. C. Wang, “On-Chip High-Q Inductor Using Wafer-Level Chip-Scale Package Technology,” in Proc. IMPACT Assembly and Circuits Technology, Oct. 2007, pp. 173–176.
[14] K. Hettak, R. E. Amaya, “A Novel Compact Three-Dimensional CMOS Branch-Line Coupler using the Meandering ECPW, TFMS, and Buried Micro Coaxial Technologies at 60 GHz,” IEEE Microw. Theory Tech., pp. 1576 –1579, May. 2010.
[15] I. Haroun, J. Wight “Experimental Analysis of a 60 GHz Compact EC-CPW Branch-Line Coupler for mm-Wave CMOS Radios” IEEE Microw. and Wireless Compon. Lett., vol. 20,no. 4, pp. 211–213, Apr. 2010.
[16] K. Hettak, G. A. Morin “Compact MMIC CPW and Asymmetric CPS Branch-Line Couplers and Wilkinson Dividers Using Shunt and Series Stub Loading,” IEEE Microw. Theory Tech, vol. 53, no. 5, pp. 1624–1635, May 2005.
[17] D. Kaddour, H. Issa “High-Q Slow-Wave Coplanar Transmission Lines on 0.35 μm CMOS Process” IEEE Microw. and Wireless Compon. Lett., vol. 19, no. 9, pp. 542–544, Sep. 2009.
[18] A. Sayag, S. Levin “A 25 GHz 3.3 dB NF Low Noise Amplifier based upon Slow Wave Transmission Lines and the 0.18 μm CMOS Technology,” in IEEE RFIC Symp., Jun. 2008, pp. 373–376.
[19] J. Shi, K. Kang “Investigation of CMOS on-chip transmission lines CPW, SCPW and CPWG up to 110GHz,” in RFIT IEEE Symp., Jan. 2009, pp. 269–272.
[20] M. N. Do, D. Dubuc “3D-BCB Based Branchline Coupler for K-band Integrated Microsystem,” IEEE 36th European Microw. Conf., Sep. 2006, pp. 498–501.
[21] T. Hirota, A. Minakawa, “Reduced-Size Branch-Line and Rat-Race Hybrids for Uniplanar MMIC''s,” IEEE Microw. Theory Tech., Vol. 38, pp. 270–275, Mar. 1990.
[22] W. Lerdsitsomboon and K. O. Kenneth, “Technique for integration of a wireless switch in a 2.4 GHz single chip radio,” IEEE JSSCC, vol. 46, no. 2, pp. 368–377, Feb. 2011.
[23] J. Lee, Y.-A. Li, “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE JSSCC, vol. 46, no. 12, pp. 2746–2756, Dec. 2010.
[24] I. Kwon, Y. Eo, “A single-chip CMOS transceiver for UHF mobile RFID reader,” IEEE JSSCC, vol. 43, no. 3, pp. 729–738, Mar. 2008.

[25] Y. Cao, R. A. Groves, “Frequency-independent equivalent-circuit model for on-chip spiral inductors,” IEEE JSSCC, vol. 38, no. 3, pp. 419–426, Mar. 2003.
[26] J. R. Long and M. A. Copeland, “The modeling, characterization, and design of monolithic inductors for silicon RF IC’s,” IEEE JSSCC, vol. 32, no. 3, pp. 357–369, Mar. 1997.
[27] S. Wang, K.-H. Tsai, “Design of X-band RF CMOS transceiver for FMCW monopulse radar,” IEEE Microw. Theory Tech., vol.57, no.1, pp.61–70, Jan. 2009.
[28] X. He and W. B. Kuhn, “A 2.5-GHz low-power, high dynamic range self-tuned Q-enhanced LC filter in SOI,” IEEE JSSCC, vol. 40, no. 8, pp. 1618–1628, Aug. 2005.
[29] E.C. Park, Y.S. Choi, “Fully integrated low phase-noise VCOs with on-chip MEMS inductors,” IEEE MTTS, vol. 51, no. 1, pp. 289–296. Jan. 2006.
[30] H. H. Hsieh, Y.T. Liao, “A compact quadrature hybrid MMIC using CMOS active inductors,” IEEE MTTS, vol. 55, no. 6, pp. 1098–1104, Jun. 2007.
[31] Y. Zheng, and C. E. Saavedra, “Frequency response comparison of two common active inductors,” Prog. In Electromagn. Res. Lett., vol. 13, pp. 113–119, 2010.
[32] C. L. Ler, A. K. B. A’ain “CMOS source degenerated differential active inductor,” IEEE Electronics Lett., vol. 44, no. 3, pp. 196–197, Jan. 2008.
[33] B. Georgescu, I. G. Finvers, “2 GHz Q-enhanced active filter with low passband distortion and high dynamic range,” IEEE JSSCC, vol. 41, no. 9, pp. 2029–2039, Sep. 2006.
[34] T. Soorapanth and S. S. Wong, “A 0-dB IL 2140 ± 30MHz bandpass filter utilizing Q-enhanced spiral inductors in standard CMOS,” IEEE JSSCC, vol. 37, no. 5, pp. 579–586, May 2002.
[35] J. Kulyk and J. Haslett, “A monolithic CMOS 2368 ± 30MHz bandpass filter,” IEEE JSSCC, vol. 41, no. 2, pp. 362–374, Feb. 2006.
[36] K. W. Fan, C. C. Weng, “K-Band MMIC active band-pass filters” IEEE Microw. and Wireless Compon. Lett., vol. 15, no. 1, pp. 19–21, Jan. 2005
[37] M. J. Chiang, H. S. Wu, and C. K. C. Tzuang “A 3.7-mW Zero-dB fully integrated active bandpass filter at Ka-band in 0.18-μm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., Atlanta, GA, Jun. 2008, pp. 1043–1046.
[38] K. K. Huang, M. J. Chiang, and C. K. C. Tzuang, “A 3.3 mW K-band 0.18-μm 1P6M CMOS active bandpass filter using complementary current-reuse pair,” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 2, pp. 94–96, Feb. 2008.
[39] S. Wang and R.-X. Wang, “A tunable bandpass filter using Q-enhanced and semi-passive inductors at S-band in 0.18-μm CMOS,” Prog. In Electromagn. Res. B, vol. 28, pp. 55–73, 2010.
[40] S. Wang and R.-X. Wang, “Q-enhanced CMOS inductor using tapped-inductor feedback,” IET Electron. Lett., vol. 47, no. 16, pp. 921–922, Aug. 2011.
[41] C. W. Tang, C. W. Shen, and P. J. Hsieh, “Design of low-temperature co-fired ceramic bandpass filters with modified coupled inductors,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 172–179. Jan. 2009.
[42] C. W. Tang, “Design of four-ordered cross-coupled bandpass filters with low-temperature co-fired ceramic technology,” IET Microw. Antennas & Propag., vol. 3, pp. 402–409, 2009.
[43] L. K. Yeung and K.-L. Wu, “A compact second-order LTCC bandpass filter with finite transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 337–341. Feb. 2003.
[44] P. L. Huang, J. F. Chang, Y. S. Lin, and S. S. Lu, “Micromachined V-band CMOS bandpass filter with 2 dB insertion loss,” IET Electron. Lett., vol. 45, no. 2, pp. 100–101, Jan. 2009.
[45] C. L. Yang, S. Y. Shu, and Y. C. Chiang, “Analysis and design of a chip filter with low insertion loss and two adjustable transmission zeros using 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 176–184. Jan. 2010.
[46] C. L. Yang, S. Y. Shu, and Y. C. Chiang, “Design of K-band chip filter with three tunable transmission zeros using a standard 0.13-μm CMOS technology,” IEEE Trans. Circuit and Systems-II, vol. 57, no. 7, pp. 522–526. Jul. 2010.
[47] S. Wang and B. Z. Wang, “Design of CMOS active bandpass filter with three transmission zeros,” IET Electron. Lett., vol. 47, no. 20, pp. 1130–1131, Sep. 2011.
[48] B. Georgescu, H. Pekau, J. Haslett, and Jl McRory, “Tunable coupled inductor Q-enhancement for parallel resonant LC tanks,” IEEE Trans. on Microw. Theory Tech., vol. 50, no. 10, pp. 705–713. Apr. 2003.
[49] Y. H. Chun, J. R. Lee, S. W. Yun, and J. K. Rhee, “Design of an RF low-noise bandpass filter using active capacitance circuit,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 687–695. Feb. 2005.
[50] K. K. M. Cheng and H. Y. Chan, “Noise performance of negative-resistance compensated microwave bandpass filter–theory and experiments,” IEEE Trans. on Microw. Theory Tech., vol. 49, no. 5, pp. 924–927. May 2005.
[51] J. H. Tsai, W. C. Chen, “A miniature K-band low noise amplifier using 0.13-um CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106–108, Mar. 2004.
[52] M. A. Masud, H. Zirath, “90 nm CMOS MMIC amplifier,” in Proc. IEEE RFIC Symp. Dig., Jun. 2004, pp. 201–204.
[53] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin, and H.Wang, “A 3.9-dB NF low-noise amplifier using 0.18-?m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448–450, Jul. 2005.
[54] A. Liscidini, C. Ghezzi, E. Depaoli, G. Albasini, I. Bietti, and R. Castello, “Common gate transformer feedback LNA in a high IIP3 current mode RF CMOS front-end,” in Proc. IEEE CICC, Sep. 2006, pp. 25–28.
[55] D. K. Shaeffer, T. H. Lee, "A 1.5-V 1.5-GHz CMOS low noise amplifier," IEEE JSSCC, vol. 32, no. 5, pp.745–759, Mar. 1997.
[56] J. S. Goo ,”A noise optimization technique for integrated low-noise amplifiers,” IEEE JSSCC, vol. 37, no. 8, pp.994–1002, Aug. 2002.
[57] C. M. Lo, C. S. Lin, “A miniature Q -band 3-stage cascode LNA in 0.13 ?m CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 1254–1263.
[58] T. K. Nguyen, “Image-Rejection CMOS Low-Noise Amplifier Design Optimization Techniques,” IEEE Trans. on Microw. Theory and Tech., vol. 53, no. 2, pp. 538–547, Feb. 2005.
[59] R. M. Wengi, “An Ultra-Wideband LNA with Notch Filter,” in 17th International Conf., Apr. 2007, pp 123–127.
[60] W. L. Chen, “A Ku-Band Interference-Rejection CMOS Low-Noise Amplifier Using Current-Reused Stacked Common-Gate Topology,” IEEE Microw. and wireless compon. Lett., vol. 17, no.10, pp. 718–720, Oct.2007.
[61] T. K. Nguyen et al. “Ultra-low-power 2.4 GHz image-rejection low-noise amplifier,” Electron. Lett. 21st, vol. 41 No. 15, Jul. 2005.
[62] J. Y. Lin, “Power-Constrained Third-Order Active Notch Filter Applied in IR-LNA for UWB Standards,” IEEE Trans. on circuits and systems, vol. 58, no. 1, pp.11–15, Jan. 2011.
[63] P. Anand, “An Image-Reject Low-Noise Amplifier with Passive Q-enhanced Notch Filters,” in Proc. Electrical and Computer Enging., 2007 Conf, Feb. 2007, pp. 368–371.
[64] K. W. Yu, “K-Band Low-Noise Amplifiers Using 0.18 um CMOS Technology,” IEEE Microw. and wireless compon. Lett., vol. 14, no. 3, pp.106–108, Mar. 2004.
[65] P. Y. Deng, “Design of Low-Power K-band Low-Noise Amplifier in 0.18 μm CMOS Applications,” In Proc. AEM2C 2010 International Conf., Sep. 2010, pp. 84 –88.
[66] Y. H. Kuo, “A 24-GHz 3.8-dB NF Low-Noise Amplifier with Built-In Linearizer,” in Proc. Electrical Engineering and Graduate Institute of Communication Engineering , Jan.2008, pp. 452-456.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top