跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:Tran anh trung
研究生(外文):Tran anh trung
論文名稱:運用液化石油氣於半直接噴射火花點火引擎之設計與控制
論文名稱(外文):Design and Control of Semi-Direct Injection Spark Ignition Engine Fuelled by LPG
指導教授:吳浴沂陳柏全陳柏全引用關係
指導教授(外文):Yuh-Yih WuBo-Chiuan Chen
口試委員:姜嘉瑞蘇評揮蔡國隆黃國修
口試委員(外文):Chia-Jui ChiangGo-Long Tsai
口試日期:2012-07-10
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:126
中文關鍵詞:機車汽油引擎層狀燃燒基於扭力式控制
外文關鍵詞:MotorcycleGasoline engineStratified combustionTorque-based control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為減少亞洲區域中大量機車所排放的廢氣,在本研究提出一機車引擎之稀薄燃燒系統與其控制策略,透過提升引擎效率及降低汙染排放的方式,來改善環境的空氣品質。本文中所採用的稀薄燃燒系統,係結合強烈進氣渦流、半直接噴射(semi-direct injection, SDI)及液化石油氣燃料等技術。藉由傳統機車氣道燃油噴射(port fuel injection, PFI)引擎進氣道修改並置入一可切換式檔片,能將汽缸內之渦旋比(swirl ratio)提升至0.958,且由於缸內紊流強度增強的關係,其引擎的稀油極限(lean-limit)將可提升至相對空燃比(relative air/fuel ratio, λ)1.7。機車引擎之稀薄燃燒控制策略,包含引擎管理系統(engine management system, EMS)、適應性進氣歧管壓力(pressure intake manifold, PIM)控制、層狀模式之適應性扭力控制、均質模式之適應性扭力控制及均質/層狀模式切換控制策略。
首先,傳統機車汽油引擎與稀薄燃燒系統之機車引擎將於低負載區域進行油耗與污染排放測試,其中包含了大多數ECE-40行車型態下之運轉點。實驗結果顯示,制動能量消耗率(brake-specific energy consumption, BSEC)可減少19.2%,CO2、NOX與CO的廢氣排放分別改善了27%、47%及94%,HC排放則增加4.5%。第二,機車引擎加上本研究提出之控制策略,由實驗結果顯示在均質/層狀模式切換時能有效的減少扭力顛簸。本研究提出之SDI引擎設計可以使機車在稀薄燃燒情況下運行,減少廢氣排放及油耗且機車仍維持高功率輸出。


Reducing motorcycle exhaust emissions to improve air quality is important in Asia due to the large number of motorcycles. This dissertation proposes a lean-burn system and lean-burn engine control strategies for improving motorcycle engine emissions and performance. The lean-burn system, called semi-direct injection (SDI), comprises high-swirl charge, injection during intake-valve opening, and liquefied petroleum gas (LPG) injection. A conventional motorcycle engine with port fuel injection (PFI) and spark ignition (SI) was retrofitted by designing a new intake port with a controllable plate to enhance the swirl of intake flow. The swirl ratio was increased to 0.958, enhancing turbulence of air flow inside the combustion chamber, and the lean limit was extended to 1.7 of relative air/fuel ratio (lambda). The proposed lean-burn engine control strategies consist of engine management system (EMS), adaptive pressure intake manifold (PIM) control, adaptive torque control in stratified mode, adaptive torque control in homogeneous mode, and switching strategies for switching between stratified and homogeneous mode.
First, engine was tested at low-load region which includes most operating points of the ECE-40 driving cycle. A complete engine performance map was conducted for comparison between the new design and regular gasoline engines. The results show that brake-specific energy consumption (BSEC) is decreased by 19.2%. Brake-specific exhaust emissions of CO2, NOx and CO were decreased by 27%, 47% and 94%, respectively. HC emissions were increased by 4.5%. Second, the experiments with the implementation of control strategies were performed, the results show that the proposed control strategies have good performance with small torque bumps in the switching mode. With this new design of SDI system, the motorcycle can be run with lean mixture and drastically reduce the exhaust emission and fuel consumption while still maintaining high specific power output.


CHINESE ABSTRACT i
ENGLISH ABSTRACT iii
ACKNOWLEDGMENTS v
CONTENTS vi
List of Tables viii
List of Figures ix
Chapter 1 INTRODUCTION 1
1.1 Research background and motivation 1
1.2 The literature review 3
1.2.1 Engine efficiency 3
1.2.2 Effect of charge motion to fuel distribution 6
1.2.3 Engine model 8
1.2.4 Engine control 10
1.3 Research objectives and methods 13
Chapter 2 ENGINE DESIGN 18
2.1 Swirl generation 18
2.2 Charger motion 22
2.3 Fuel distribution 25
Chapter 3 MODELING 28
3.1 Airflow dynamics 29
3.2 Torque dynamics 31
3.3 Friction dynamics 35
3.4 Engine rotational dynamics 37
3.5 Motorcycle longitudinal dynamics 38
Chapter 4 CONTROLLER DESIGN 41
4.1 Estimator 42
4.1.1 Cylinder air charge estimation 43
4.1.2 Engine torque estimation 44
4.2 Intake manifold pressure control 48
4.3 Torque control 54
4.3.1 Stratified mode 56
4.3.2 Homogeneous mode 64
4.3.3 Switching strategies 73
Chapter 5 SIMULATION RESULTS 83
5.1 Engine model validation 83
5.2 Controller design 86
5.2.1 Intake manifold pressure 86
5.2.2 Torque control 87
5.2.3 Driving cycle test 90
Chapter 6 EXPERIMANTAL RESULTS 92
6.1 Experiment setup 92
6.2 Effect of lean burn on exhaust pollution 95
6.3 Engine performance map 97
6.4 Brake torque 101
6.5 Intake manifold pressure control 103
6.6 Torque control 104
6.7 Driving cycle 109
Chapter 7 CONCLUSIONS 111
REFERENCES 114
NOMENCLATURE 122
PUBLISHED PAPERS 126


[1]US EPA, http://www.epa.gov/EPA-AIR/2000/April/Day-25/a7887.htm
[2]European Commission, ‘Current and Future European Community Emission’, http://europa.eu.int/comm/enterprise/automotive/pagesbackground/pollutant_emission/pollutant_emission.pdf, 2003.
[3]S. C. Chuang, S. J. Chen, K. L. Huang, G. P. Chang-Chien, L. C. Wang, Y. C. Huang, “Emissions of Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran from Motorcycles,” Aerosol Air Qual. Res. 10: 533-539.
[4]J. C. Lou, C. M. Hung, and L. H. Huang, “Selective Catalytic Reduction of NO by Methane on Copper Catalysts: the Effects of Modifying the Catalysts with Acids on γ-alumina,” Aerosol Air Qual. Res. 3: 61-73.
[5]C. H. Kim, K. Perry, M. Viola, W. Li and K. Narayanaswamy, “Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System,” SAE paper No. 2011-01-0306.
[6]Y. Sato, M. Kurata and G. Naoe “Reduction of Fuel Consumption on Single-cylinder General Purpose Engine”. SAE paper No. 2007-32-0007.
[7]H. Yamamoto, “Investigation on Relationship Between Thermal Efficiency and NOx Formation in Ultra-Lean Combustion,” SAE paper No. 1999-01-3328.
[8]Y. Y. Wu, B. C. Chen and A. T. Tran, “Application of semi-direct injection for spark-ignition engine. Int. J. Vehicle Design,” Vol. 54 No. 4, 2010, 354-370.
[9]B. Queenan, C. Nightingale and J. Bennett “Charge stratification in a 4-valve SI engine through injection into one intake port with induced axial swirl within the cylinder,” SAE paper No. 972875
[10]I. Y. Ohm and Y. S. Cho, “Fuel Stratification Process in the Cylinder of an Axially Stratified Engine,” SAE paper No. 2000-01-2842.
[11]N. Ishikawa, A. Hiraide and T. Takabayashi “Air/fuel distribution simulation in a portinjected gasoline lean-burn engine,” SAE paper No 2001-01-1230.
[12]Y. Y. Wu, H. C. Tsai, M. C. Nguyen, “Investigation of realizing SDI with high swirl charge in a motorcycle engine,” International Journal of Energy, Issue 2, Vol. 3, 2009, 25-34.
[13]I. Y. Ohm and Y. S. Cho, “Mechanism of Axial Stratification and Its Effect in an SI Engine,” SAE paper No 2000-01-2843.
[14]M. A. Khan, H. C. Watson and P. Baker, “Mixture Preparation Effects on Gaseous Fuel Combustion in SI Engines,” SAE paper No 2009-01-0323.
[15]R. R. Saraf, S. S. Thipse and P. K. Saxena, “Comparative Assessment on Performance and Emissions of LPG/Gasoline Bi-fuel Passenger Car PFI Engines,” SAE paper No 2009-01-1665.
[16]R. M. Shanmugam, N. M. Kankariya, J. Honvault, L. Srinivasan, H. C. Viswanatha, P. Nicolas, N. Saravanan and D. Christian, “Performance and Emission Characterization of 1.2L MPI Engine with Multiple Fuels (E10, LPG and CNG),” SAE paper No 2010-01-0740.
[17]Campbell, M., Wyszyński, Ł.P. and Stone, R. (2004). Combustion of LPG in a Spark-Ignition Engine, SAE paper No 2004-01-0974
[18]M. A. Khan, H. C. Watson, P. Baker and G. Liew, “SI Engine Lean-Limit Extension Through LPG Throttle-Body Injection for Low CO2 and NOx,” SAE paper No 2006-01-0495.
[19]G. Regner, E. Loibner, J. Krammer, L. Walter, and R. Truemner, “Analysis of transient drive cycles using CRUISE-BOOST co-simulation techniques,” SAE paper No. 2002-01-0627.
[20]E. Rask and M. Sellnau, “Simulation-Based Engine Calibration: Tools, Techniques, and Applications,” SAE paper No. 2004-01-1264.
[21]J. J. Moskwa and J. K. Hedrick, “Modeling and Validation of Automotive Engines for Control Algorithm Development,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, 1992, Vol. 114, pp. 278-285.
[22]P. J. Yoon and M. Sunwoo, “A Nonlinear dynamic modeling of SI Engines for Controller Design,” International Journal of Vehicle Design, 2001, Vol. 26, No. 2-3, pp. 277-297.
[23]Z. H. Kodah, H. S. Soliman, M. A. Qudais, and Z. A. Jahmany, “Combustion in a Spark-ignition Engine,” Applied Energy, 2000, Vol. 66, n 3, pp. 237-250.
[24]G. H. A. Alla, “Computer Simulation of a Four Stroke Spark Ignition Engine,” Energy Conversion and Management, 2002, Vol. 43, n 8, pp. 1043-1061.
[25]Y.-Y. Wu, Y. Shiao, and B.-C. Chen, “Motorcycle Engine Modeling for Real Time Control,” 2002 6th International Symposium on Advanced Vehicle Control, Hiroshima, Japan.
[26]J.B. Heywood: Internal Combustion Engine Fundamentals. McGraw-Hill, 1988. 727-728.
[27]J. B. Heywood, J. M. Higgins, P. A. Watts and R. J. Tabaczynski “Development and use of cycle simulation to predict SI engine efficiency and NOx emissions,” SAE paper No. 790291.
[28]H. Bayraktar, O. Durgun, “Development of an empirical correlation for combustion durations in spark ignition engines,” Energy Conversion and Management 45 (2004) 1419–1431.
[29]M. Gupta, S. R. Bell, S. T. Tillman, “An Investigation of Lean Combustion in a Natural Gas-Fueled Spark-Ignited Engine,” Journal of Energy Resources Technology JUNE 1996, Vol. 118 / 145.
[30]P. Bollweg, A. Kaufmann, “Dynamic Burn Rate Modeling for the 1D Simulation of a GDI Engine in Homogeneous and Stratified Operation Mode,” SAE paper No. 2008-01-2393.
[31]M. J. van Nieuwstadt, I. V. Kolmanovsky, D. Brehob and M. Haghgooie, “Heat Release Regressions for GDI Engines” SAE paper No. 2000-01-0956.
[32]J. Gerhardt, H. Honninger, and H. Bischof, “A new approach to functional and software structure for engine management systems,” SAE technical paper 980801.
[33]L. Guzzella and C.H. Onder, “Introduction to Modeling and Control of Internal Combustion Engine systems,” Berlin: Springer, 2004.
[34]O. A. Kutlar, H. Arslan and A. T. Calik, “Methods to improve efficiency of four stroke, spark ignition engines at part load,” Energy Conversion and Management 46 pp. 3202–3220.
[35]Y. Y. Wu, B. C. Chen, and F. C. Hsieh, “Modulization of Four-Stroke Single-Cylinder Spark-Ignition Air-Cooled Engine Models,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 221, No. 8, 2007, pp. 1015-1026.
[36]B. C. Chen, Y. Y. Wu, and Y. D. Huang, “Modeling and Control of Hybrid Electric Motorcycle with Direct-Driven Wheel Motors,” SAE Paper No. 2004-01-1054.
[37]Y. Y. Wu, B. C. Chen, C. H. Wu and H. C. Tsai, “New Charging Model Imparting the Valve Timing for Real-Time Simulation,” Proceedings of ASME Internal Combustion Engine Division 2009 Spring Technical Conference, Milwaukee, Wisconsin, USA.
[38]Y. Y. Wu, Y. Shiao and B. C. Chen, “Motorcycle Engine Modeling for Real Time Control,” In Proceedings of International Symposium on Advanced Vehicle Control, Hiroshima, Japan.
[39]Y. Y. Wu, B. C. Chen and F. C. Hsieh, “Heat Transfer Model for Small-Scale Air-Cooled Spark Ignition Four-Stroke Engines,” International Journal of Heat and Mass Transfer, 49(21-22), 3895-3905.
[40]S. Drakunov, G. Rizzoni and Y. Y. Wang, “On-Line Estimation of Indicated Torque in IC Engines Using Nonlinear Observers,” SAE Paper No. 950840.
[41]D. A. Kouremenos, C. D. Rakopoulos, D. T. Hountalas, and T. K. Zannis,“Development of a Detailed Friction Model to Predict Mechanical Losses at Elevated Maximum Combustion Pressures,” SAE Paper No. 2001-01-0333.
[42]E. Brusa, C. Delprete and G. Genta, “Torsional vibration of crankshafts: Effects of non-constant moments of inertia,” Journal of Sound and Vibration, 205(2), 135-150.
[43]W. S. Worley, “Designing adjustable-speed V-belt drives for farm implements,” Soc. Autom. Eng. Trans., vol. 63, pp. 321–333, 1955.
[44]B. G. Gerbert, “Some notes on v-belt drives,” Trans. ASME, J. Mech. Des., vol. 103, no. 1, pp. 8–18, 1981.
[45]Y. J. Tu, “Electronically-controlled continuously variable transmission systems for motorcycles,” M.S. thesis, Kun Shan Univ. Technol.,Yun-Kang City, Taiwan, 2003.
[46]H. W. Lin, “Performance simulation and testing analysis of motorcycle with continuously variable transmission powertrain,” M.S. thesis, Nat. Tsing Hua Univ., Hsinchu City, Taiwan, 1996.
[47]V. Cossalter, “Motorcycle Dynamics,” Race Dynamics, 2002.
[48]P. Azzoni, D. Moro and F. Ponti, “Engine and Load Torque Estimation with Application to Electronic Throttle Control,” SAE Paper No. 980795
[49]E. Grunbacher, P. Kefer and L. del Re “Estimation of the Mean Value Engine Torque Using an Extended Kalman Filter,” SAE Paper No. 2005-01-0063.
[50]M Gafvert, KE Arzen, L.M. Pedersen and B. Bernhardsson “Control of GDI engines using torque feedback exemplified by simulations,” Contr. Eng. Prac., Vol. 12, pp. 165-180, Feb. 2004.
[51]M. Katsumata, Y. Kuroda and A. Ohata “Development of an Engine Torque Estimation Model: Integration of Physical and Statistical Combustion Model,” SAE Paper No. 2007-01-1302
[52]J. J. Moskwa, “Automotive Engine Modeling for Real Time Control,” Ph.D. thesis, Massachusetts Institute of Technology, 1988.
[53]F. Zhang, K. M. Grigoriadis, M. A. Franchek and I. H. Makki “Linear Parameter-Varying Lean Burn Air-Fuel Ratio Control for a Spark Ignition Engine,” Transactions of the ASME 404 / Vol. 129, JULY 2007.
[54]Y. Iwamoto, K. Noma, O. Nakayama, T. Yamauchi and H. Ando, “Development of gasoline direct injection engine,” SAE paper No. 970541.
[55]T. Kume, Y. Iwamoto, K. Lida, M. Murakami, K. Akishino and H. Ando, “Combustion control technologies for direct injection SI engine,” SAE paper No. 960600.
[56]F. Q. Zao, M. C. Lai and D. L. Harrington, “A review of mixture preparation and combustion control strategies for spark ignited direct-injection gasoline engines,” SAE paper No. 970627.
[57]M. Druzhinina, I. Kolmanovsky and J. Sun, “Hybrid control of a gasoline direct injection engine,” In Proceedings of the 38th conference on decision & control (pp. 2667–2672). Arizona USA: Phoenix.
[58]M. Gafvert, L. M. Pedersen, K.-E. Arzen, and Bo Bern-hardsson, “Simple feedback control and mode switching strategies for GDI engines,” SAE paper No. 2000-01-0263.
[59]M. Nakamura, Y. Sawada, and S. Hashimoto, “Fuel Injection System for Small Motorcycles,” SAE Paper No. 2003-32-0084.
[60]Y. Y. Wu, Y. Y. Peng, and T. T. Gau “Emission Control of Four-stroke Motorcycle Engine,” SAE Paper No. 951760.
[61]H. Xu, “Some critical technical issues on the steady flow testing of cylinder heads,” SAE paper No. 2001-01-1308,
[62]Y. M. Guo, A. T. Tran and Y. Y. Wu, “An Investigation on Lean Burn for Semi-Direct Injection Engine by Using Liquefied Petroleum Gas,” The 16th National Conference on Vehicle Engineering Taipei.
[63]SAE J1088 (1993). Test Procedure for the Measurement of Exhaust Emissions from Small Utility Engines, SAE Recommended Practice.
[64]d’A. Stefano, F. Roberto, S. Ezio, “Calculation of Mass Emissions, Oxygen Mass Fraction and Thermal Capacity of the Inducted Charge in SI and Diesel Engines from Exhaust and Intake Gas Analysis,” Fuel 90 (2011), 152-166.
[65]M. Pecqueur, K. Ceustermans, P. Huyskens and D. Savvidis, “Emissions Generated from a Suzuki Liane Running on Unleaded Gasoline and LPG under the Same Load Conditions,” SAE paper No. 2008-01-2637.
[66]I. Colbeck, Z. A. Nasir, S. Ahmad and Z. Ali, “Exposure to PM10, PM2.5, PM1 and Carbon Monoxide on Roads in Lahore, Pakistan,” Aerosol Air Qual. Res. 11: 689-695.
[67]C. M. Ma, G. B. Hong, C. T. Chang, “Influence of Traffic Flow Patterns on Air Quality inside the Longest Tunnel in Asia,” Aerosol Air Qual. Res. 11: 44-50.
[68]H. James, H. Zhiyu and C. Top, “Unburned Hydrocarbon Emissions from Stratified Charge Direct Injection Engines,” SAE paper No. 2003-01-3099.
[69]S. Hakan, L. Ronny and D. Ingemar, “Sources of Hydrocarbon Emissions from a Direct Injection Stratified Charge Spark Ignition Engine,” SAE paper No. 2000-01-1906.
[70]C. L. Lee, C. J. G. Jou, H. Tai, C. H. Wang, S. C. Hsieh and H. Paul Wang, “Reduction of Nitrogen Oxide Emission of a Medium-Pressure Boiler by Fuel Control,” Aerosol Air Qual. Res. 6: 123-133.
[71]H. K. Wang, C. Y. Cheng, Y. C. Lin and K. S. Chen, “Emission Reductions of Air Pollutants from a Heavy-duty Diesel Engine Mixed with Various Amounts of H2/O2,” Aerosol Air Qual. Res. 12: 133-140.
[72]U. Kumar, A. Prakash and V. K. Jain, “A Photochemical Modelling Approach to Investigate O3 Sensitivity to NOx and VOCs in the Urban Atmosphere of Delhi,” Aerosol Air Qual. Res. 8: 147-159.
[73]T. Lucchini, G. D’Errico, F. Brusiani, G. M. Bianchi, Ž. Tuković, and H. Jasak, “Multi-dimensional modeling of the air/fuel mixture formation process in a PFI engine for motorcycle applications,” SAE Paper No. 2009-24-0015.
[74]A. Kulzer, D. Lejsek and T. Nier, “A Thermodynamic Study on Boosted HCCI: Motivation, Analysis and Potential,” SAE Paper No. 2010-01-1082.
[75]Y. M. Guo, “An Investigation on Lean Limit Extension for SDI Engine by CFD Numerical Method,” M.S. thesis, National Taipei University of Technology, Taipei, Taiwan, 2012.
[76]A. Jiangjian, B. Gao Xiyan, and C. Yao Chunde, “An Experimental Study on Fuel Injection System and Emission of a Small GDI Engine” Proceedings of the 2nd IEEE/ASME International Conference. 10.1109/MESA.2006.296988
[77]S. Krishnan, D.S Kulkarni, “Gasoline to gas revolution,” SAE Paper No. 2005-26-033.
[78]N. Kawahara, E. Tomita, T. Kadowaki, T. Honda and H. Katashiba, “In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method” Exp Fluids (2010) 49:925–936


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 黃啟龍(2002)。網路上的公共領域實踐:以弱勢社群網站為例。資訊社會研究,3,85-111。
2. 黃啟龍(2002)。網路上的公共領域實踐:以弱勢社群網站為例。資訊社會研究,3,85-111。
3. 黃啟龍(2002)。網路上的公共領域實踐:以弱勢社群網站為例。資訊社會研究,3,85-111。
4. 黃啟龍(2002)。網路上的公共領域實踐:以弱勢社群網站為例。資訊社會研究,3,85-111。
5. 曹純瓊、章玉玲(2007)。父母教養自閉症幼兒之心理適應研究。東臺灣特殊教育學報,9,109-123。
6. 曹純瓊、章玉玲(2007)。父母教養自閉症幼兒之心理適應研究。東臺灣特殊教育學報,9,109-123。
7. 曹純瓊、章玉玲(2007)。父母教養自閉症幼兒之心理適應研究。東臺灣特殊教育學報,9,109-123。
8. 曹純瓊、章玉玲(2007)。父母教養自閉症幼兒之心理適應研究。東臺灣特殊教育學報,9,109-123。
9. 張英熙、吳珍(2001)。特殊兒童家長支持團體效果初探。特殊教育季刊,80,30-34。
10. 張英熙、吳珍(2001)。特殊兒童家長支持團體效果初探。特殊教育季刊,80,30-34。
11. 張英熙、吳珍(2001)。特殊兒童家長支持團體效果初探。特殊教育季刊,80,30-34。
12. 張英熙、吳珍(2001)。特殊兒童家長支持團體效果初探。特殊教育季刊,80,30-34。
13. 張恆豪(2007)。特殊教育與障礙社會學:一個理論的反省。教育與社會研究,13,71-94。
14. 張恆豪(2007)。特殊教育與障礙社會學:一個理論的反省。教育與社會研究,13,71-94。
15. 張恆豪(2007)。特殊教育與障礙社會學:一個理論的反省。教育與社會研究,13,71-94。