跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉承鴻
研究生(外文):Cheng-Hung Yeh
論文名稱:以雷射超音波技術建立高溫材料性質量測平台及其應用
論文名稱(外文):Development and application of a high temperature material characterization platform based on laser ultrasound technique
指導教授:楊哲化
指導教授(外文):Che-Hua Yang
口試委員:廖駿偉尹慶中蘇春熺蘇程裕馬劍清
口試委員(外文):Jiunn-Woei LiawChing-Chung YinChun-Hsi SuCherng-Yuh SuChien-Ching Ma
口試日期:2012-05-15
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:190
中文關鍵詞:非破壞檢測雷射超音波技術洗牌複合演進演算法鋯合金護套熔射技術高溫量測
外文關鍵詞:Nondestructive techniquelaser ultrasound techniqueguided wavesSCE-UA algorithmZircaloy cladding tubethermal spray techniquetemperature dependence
相關次數:
  • 被引用被引用:8
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多數的材料性質量測技術適用於常溫環境而在高溫環境的應用上有其困難性。然而,結構材料常因工作環境處於高溫的狀態下而導致材料性質的變化或劣化;材料也常因不可避免的高溫製程再冷卻所導致的高殘餘應力而對後續的應用產生困擾。因此,開發適用於高溫環境下的材料性質量測或監測技術是材料製造及應用上的一大課題。本研究以雷射超音波技術作為量測基礎測得沿待測物傳播之多種導波頻散關係,並結合導波理論模型以及全域最佳化的洗牌複合演進演算法,建立一個適用於高溫環境中的材料機械性質量測平台。本平台具備了非接觸、非破壞、遠距操作等各項量測優點,軟體介面具整合性以及擴充性可於單一平台內反算各種幾何外型之材料參數並可擴充導波理論模型,目前可量測平板、圓管以及膜層的等向性材料性質。另外本研究利用所開發的平台量測未氫化、200ppm以及500ppm含氫量之鋯管和不同製程條件的熔射鎳鋁合金膜層在常溫至295oC溫度環境下所對應的材料機械性質。根據鋯管研究結果顯示,當鋯管含氫量增加時其對應的彈性係數會隨之下降。進一步發現,隨著環境溫度的增加,彈性係數下降幅度也隨之增大;鋯管的蒲松比會從0.305上升至0.340。根據熔射鎳鋁合金膜層研究結果顯示,以大氣電漿熔射以及高速火焰熔射之鎳鋁合金膜層在常溫下其所對應的彈性係數值約為50至160GPa。當膜層製程中的氣體流速參數越快時,其對應的彈性係數會隨之上升;以高速火焰熔射技術製作膜層,其膜層彈性係數皆高於大氣電漿熔射技術所製作的膜層;當膜層厚度增加時,膜層彈性係數也會隨之上升。隨著環境溫度的增加,鎳鋁合金膜層的彈性係數會隨之下降,而蒲松比在部份膜層試片會隨之下降,其餘會隨之上升。
藉由本研究對高溫材料性質量測平台的開發,研究者可以藉由非接觸、非破壞以及即時量測的方式獲得結構材料在不同環境溫度下的材料性質定量資料,對於材料的製程及應用將有實質的貢獻。


This research is focused on the development of a noncontact, nondestructive high temperature material characterization platform consisting of a laser ultrasound measurement system followed by an inversion algorism for the extraction of material properties. In applying this platform, dispersion of Lamb waves or surface waves are measured with a laser laser-generation/laser-detection laser ultrasound technique (LUT). The platform is embedded with theoretical models for guided waves propagating along a plate, tube and multi-layered structure with coating. An inversion algorism based on shuffled complex evolution (SCE-UA) is used to extract mechanical properties from the measured dispersion spectra cooperating with theoretical model. With the advantages of nondestructive, noncontact and capable of remote measurements, this platform is applied for measurements at elevated temperature environments. Zircaloy cladding tubes of 0ppm, 200ppm and 500ppm hydrogen concentration (H.C.) used in nuclear fuel and thermal sprayed coatings of various manufacture parameters are tested and their material properties are obtained at the elevated temperature environments.
The Young’s modulus of Zircaloy cladding tubes will decrease while the hydrogen concentration increasing. At higher temperature environment, Young’s modulus decrease substantially of higher hydrogen concentration. On the other hand, the various manufacturing Ni-Al sprayed coatings at different temperature environment is reacted to dispersion spectrum of guided waves. The Young’s modulus of HVOF coatings are higher than APS coatings. This platform is potentially useful to probe the material characterization at high temperature environment in a remote and nondestructive way.


中文摘要...i
英文摘要...iii
誌謝...v
目錄...vi
表目錄...x
圖目錄...xii
第一章 緒論...1
1.1 研究動機...1
1.2 鋯合金護套...1
1.3 熔射技術之鎳鋁合金膜層...3
1.4 文獻回顧...5
1.4.1 鋯合金護套之材料性質檢測相關研究...6
1.4.2 熔射膜層之材料性質檢測相關研究...7
1.4.3 導波檢測技術相關研究...9
1.5 研究目的...13
第二章 理論模型...15
2.1 單層平板理論模型...15
2.2 單層圓管理論模型...17
2.3 多層結構表面波理論模型...20
第三章 實驗方法...26
3.1 雷射超音波技術...26
3.1.1 訊號激發...27
3.1.2 訊號接收...29
3.2 訊號處理...29
3.3 微硬度量測...31
3.4 孔隙率量測...32
第四章 反算技術...33
4.1 反算技術之架構...33
4.2 理論模型之正向解...34
4.2.1 全域灰階法...35
4.2.2 爬尋法...36
4.3 參數反算方法...38
4.3.1 洗牌複合演進演算法...38
4.3.2 誤差函數...43
4.3.3 收斂條件...46
第五章 材料性質量測平台之建立與測試...47
5.1 量測平台...47
5.1.1 材料參數資料庫模組...48
5.1.2 理論頻散關係曲線模組...50
5.1.3 訊號處理模組...51
5.1.4 材料參數反算模組...52
5.2 平台誤差源及其影響之探討...55
5.2.1 單層平板...57
5.2.1.1 三變數反算之已知密度參數誤差...58
5.2.1.2 兩變數反算之已知密度參數誤差...62
5.2.1.3 兩變數反算之已知厚度參數誤差...62
5.2.2 單層圓管...65
5.2.2.1 三變數反算之已知內徑參數誤差...66
5.2.2.2 三變數反算之已知密度參數誤差...69
5.2.2.3 兩變數反算之已知內徑參數誤差...72
5.2.2.4 兩變數反算之已知密度參數誤差...72
5.2.2.5 兩變數反算之已知厚度參數誤差...72
5.2.3 膜層材料...75
5.2.3.1 三變數反算之已知基材密度參數誤差...77
5.2.3.2 三變數反算之已知膜層密度參數誤差...79
5.2.3.3三變數反算之相同表面波波速的基材參數誤差...82
5.2.3.4 兩變數反算之已知膜層厚度誤差...84
5.3 平台之實驗值測試...87
5.3.1 試片準備...88
5.3.2 雷射超音波實驗量測結果...88
5.3.3 材料參數反算結果...91
5.4 高溫材料性質量測之探討...93
5.4.1 反算變數設定...93
5.4.2 模擬測試...94
5.4.3 實驗值測試...96
5.4.3.1 雷射超音波實驗量測結果...96
5.4.3.2 熱膨脹係數為變數之反算結果...101
5.4.3.3 熱膨脹係數為定值之反算結果...103
5.4.3.4 材料參數反算結果比較...105
第六章 鋯管材料性質量測結果與討論...109
6.1試片準備...109
6.2常溫材料性質量測...112
6.2.1 雷射超音波實驗量測結果...112
6.2.2 材料參數反算結果...118
6.3高溫材料性質量測...123
6.3.1 雷射超音波實驗量測結果...123
6.3.2 材料參數反算結果...126
第七章 鎳鋁合金膜層材料性質量測結果與討論...140
7.1試片準備...140
7.2 基材常溫材料性質量測...145
7.2.1 雷射超音波實驗量測結果...145
7.2.2 材料參數反算結果...146
7.3膜層常溫材料性質量測...148
7.3.1 雷射超音波實驗量測結果...148
7.3.1.1製程參數差異...148
7.3.1.2熔射技術差異...151
7.3.1.3膜層材料差異...152
7.3.1.4膜層厚度差異...153
7.3.2 材料參數反算結果...155
7.3.3 微硬度量測結果...163
7.3.4 孔隙率量測結果...165
7.4 基材高溫材料性質量測...170
7.4.1 雷射超音波實驗量測結果...170
7.4.2 材料參數反算結果...171
7.5膜層高溫材料性質量測...174
7.5.1 雷射超音波實驗量測結果...174
7.5.2 材料參數反算結果...177
第八章 結論...182
參考文獻...185
附錄A...190


[1]C. E. Coleman and D. Harie, “The hydrogen embrittlement of alpha-Zirconium – A Review,” Journal of the Less Common Metals, vol. 11, 1966, pp. 168-185.
[2]S. B Wisner and R. B. Adamson, “Combine effects of radiation damage and hydrides on the ductility of Zircaloy-2,” Nuclear Engineering and Design, vol. 185, 1998, pp. 33-49.
[3]G. A. Bickel, L.W. Green, M.W.D. James, T.G. Lamarche, P.K. Lesson and H. Michel, “The determination of hydrogen and deuterium in Zr-2.5Nb material by hot vacuum extraction mass spectrometry,” Journal of Nuclear Materials, vol. 306, 2002, pp. 21-29.
[4]R. Yasuda, M. Matsubayashi, M. Nakata and K. Harada, “Application of neutron radiography for estimating concentration and distribution of hydrogen in Zircaloy cladding tubes,” Journal of Nuclear Materials, vol. 302, 2002, pp.156-164.
[5]A. Lois, H. Mendonca and M. Ruch, “Eddy current assessment of hydrogen content in Zirconium based alloys,” 15th World Conference on Nondestructive Testing Roma, Italy, 2000.
[6]J.L. Singh, K.P. Prasannan, H.N. Singh, K.C. Sahoo and D.S.C. Purushotham, “Hydrogen concentration profile mapping in Zircaloy pressure tube by ultrasonic velocity ratio measurement,” 7th European Conference on Non-Destructive Testing, vol. 3, no. 8, 1998.
[7]賴昱安,結合雷射超音波與反算技術於多層圓管之材料參數量測,博士論文,長庚大學,桃園縣, 2007。
[8]葉承鴻,單層圓管環向導波之頻散行為量測與材料參數反算,碩士論文,長庚大學,桃園縣, 2007。
[9]蕭威典,添加氮化硼對鎳-鋁合金熔射膜層磨耗特性之研究,博士論文,台北科技大學,台北市,2012。
[10]R.S. Lima, S.E. Kruger, G. Lamouche and B.R. Marple, “Elastic modulus measurements via laser-ultrasonic and Knoop indentation techniques in thermally sprayed coatings,” Journal of Thermal Spray Technology, vol. 14, 2005, pp. 52-60.
[11]C. Bescond, S.E. Kruger, D. Levesque, R.S. Lima and B.R. Marple, “In-situ simultaneous measurement of thickness, elastic moduli and density of thermal sprayed WC-Co coatings by laser-ultrasonics,” Journal of Thermal Spray Technology, vol. 16, 2007, pp. 238-244.
[12]D.R. Billson, D.A. Hutchins, H.D. Mair and M.D.C. Moles, “Ultrasonic evaluation of hydride concentration in zirconium-niobium alloys,” Ultrasonics, Vol.35, pp.241-249, 1997.
[13]D.A. Hutchins, C. Edwards, D. Schindel, M.D.C, Moles and H.D. Mair, “ Laser-based high temperature ultrasonic studies of hydride zirconium alloys,” Ultrasonics Symposium, 1991, pp. 907-910.
[14]P.K. De, John T. John, S. Banerjee, T. Jayakumar, M. Thavasimuthu and Baldev Raj, “Assessment of hydrogen levels in Zircaloy-2 by non-destructive testing,” Journal of Nuclear Materials, vol. 252, 1998, pp. 43-54.
[15]C.H. Yang and M.F. Huang, “Characterization of hydrogen concentration in Zircaloy cladding using a loe-frequency acoustic microscope with a PVDF/LFB transducer,” Journal of Nuclear Materials, vol. 335, 2004, pp. 359-365.
[16]D.O. Northwood, I.M. London and L.E. Bahen, “Elastic constants od zirconium alloys,” Journal of Nuclear Materials, vol. 55, 1975, pp. 299-310.
[17]H.E. Rosinger and D.O. Northwood, “The elastic properties of zirconium alloy fuel cladding and pressure tubing materials,” Journal of Nuclear Materials, vol. 79, 1979, pp. 170-179.
[18]Y. Ashida, M. Yamanoto, S. Naito, M. Mabuchi and T. Hashino, “Measurements of Young’s modulus and the modulus of rigidity of the solid solution of hydrogen in zirconium between 300 and 1300K,” Journal of Applied Physics, vol. 80, 1996, pp. 3254-3258.
[19]S. Yamanaka, K. Yoshioka, M. Uno, M. Katsura, H. Anada, T. Matsuda and S. Kobayashi, “Thermal and mechanical properties of zirconium hydride,” Journal of Alloys and Compounds, vol. 293-295, 1999, pp. 23-29.
[20]Z.L. Pan, N. Wang and Z. He, “Measurements of elastic modulus in Zr alloys for CANDU applications,” 11th International Conference on CANDU Fuel, Ontario, Canada, 2010.
[21]S. Rangaswamy and H. Herman, “Thermal expansion study of plasma-sprayed oxide coatings,” Thin Solid Films, vol. 73, 1980, pp. 43-52.
[22]L. Pawlowski, D. Lombard and P. Fauchais, “Structure-thermal properties—relationship in plasma sprayed zirconia coatings,” Journal of Vacuum Science and Technology A, vol. 3, 1985, pp. 2494-2500.
[23]K. Tani, H. Nakahira, K. Miyajima and Y. Harada, “Thermal and elastic anisotropy of thermally sprayed coatings,” Materials Transactions, JIM, vol.33, 1992, pp. 618-626.
[24]D. Schneider, T. Schwarz, H.P. Buchkremer and D. Stover, “Non-destrctive characterization of plasma-sprayed ZrO2 coatings by ultrasonic surface waves,” Thin Solid Films, vol. 224, 1993, pp. 177-183.
[25]J.S. Wallace and J. Ilavsky, “Elastic modulus measurements in plasma sprayed deposits,” Journal of Thermal Spray Technology, Vol. 7, 1998, pp. 521-526.
[26]A. Abbate, W. Russell, J. Goldman and P. Kotidis, “Nondestructive determination of thickness and elastic modulus of plasma spray coatings using laser ultrasonics,” Review of Progress in Quantitative Nondestructive Evaluation, vol. 18, 1999, pp.373-380.
[27]J. Pina, A. Dias and J.L. Lebrun, “Mechanical stiffness of thermally sprayed coatings and elastic constants for stress evaluation by X-ray diffraction,” Materials Science and Engineering, vol. A267, 1999, pp. 130-144.
[28]R.J. Damani and A. Wanner, “Microstructure and elastic properties of plasama-sprayed alumina,” Journal of Materials Science, vol. 35, 2000, pp. 4307-4318.
[29]X.Q. Ma, Y. Misutani and M. Takemoto, “Laser-induced surface acoustic waves for evaluation of elastic stiffness of plasma sprayed materials,” Journal of Materials Science, vol. 36, 2001, pp. 5633-5641.
[30]B. Roge, A. Fahr, J.S.R. Giguere and K.I. McRae, “Nondestructive measurement of porosity in thermal barrier coatings,” Journal of Thermal Spray Technology, Vol. 12, 2003, pp. 530-535.
[31]H. Chen, X. Zhou, C. Ding, “Investigation of the thermomechanical properties of a plasma-sprayed nanostructured zirconia coating,” Journal of the European Ceramic Society, vol. 23, 2003, pp. 1449-1455.
[32]L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proceedings London Mathematical Society, vol.17, 1885, pp. 4-11.
[33]N.A. Haskell, “The dispersion of surface waves on multilayered media,” Bulletin of the Seismological Society of America, vol. 43, 1953, pp. 17-34.
[34]H. Lamb, “On the flexure of an elastic plate,” Proceedings London Mathematical Society, vol.21, 1889, pp. 70-91.
[35]R. D. Mindlin, “Waves and vibrations in isotropic, elastic plates,” Pergamon Press, 1960, pp. 199-232.
[36]H. Fahmy and E. L. Adler, “Propagation of acoustic surface waves in multilayers: A matrix description,” Applied Physics Letters, vol. 22, no. 10, 1973, pp. 495-497.
[37]E. L. Adler, “Matrix methods applied to acoustic waves in multilayers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 37, no. 6, 1990, pp. 485-490.
[38]M. J. S. Lowe, “Matrix techniques for modeling ultrasonics waves in multilayered media,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 42, no. 4, 1995, pp. 525-542.
[39]L. Wang and S. I. Rokhlin, “Recursive asymptotic stiffness matrix method for analysis of surface acoustic wave devices on layered piezoelectric media,” Applied Physics Letters, vol. 81, no. 21, 2002, pp. 4049-4051.
[40]Z. wang and S. I. Rokhlin, “A compliance/stiffness matrix formulation of general Green’s function and effective permittivity for piezoelectric multilayers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 9, 2004, pp. 453-463.
[41]G. Herrmann and I. Mirsky, “Three-dimensional and shell-theory analysis of axially symmetric motions of cylinders,” Journal of Applied Mechanics, vol. 23, pp.563-568, 1956.
[42]C. Gazis, “Three-dimentional investigation of the propagation of waves in hollow circular cylinders. I. analytical foundation,” Journal of the Acoustical Society of America, vol.31, no.5, 1959, pp.568-573.
[43]C. Gazis, “Three-dimentional investigation of the propagation of waves in hollow circular cylinders. Ⅱ. numerical results,” Journal of the Acoustical Society of America, vol.31, no.5, 1959, pp.573-578.
[44]J.P. Jones, “Wave propagation in a two-layered medium,” Journal of Applied Mechanics, vol. 31, 1964, pp. 213-222.
[45]R. D. Mindlin, An introduction to the mathematical theory of vibrations of elastic plates, World Scientific Publishing Co. Pte. Ltd., 2006.
[46]N. Rattanawangcharoen, A. H. Shah and S.K. Datta, “Wave propagation in laminated composite circular cylinders,” Journal of Solids Structures, vol. 29, no. 6, 1992, pp. 767-781.
[47]T. T. Wu and Y. H. Liu, “Inverse determinations of thickness and elastic properties of a bonding layer using laser-generated surface waves,” Ultrasonics, vol. 37, 1999, pp. 23-30.
[48]D. C. Hurley, V. K. Tewary and A. J. Richards, “Thin-film elastic-property measurements with laser-ultrasonic SAW spectrometry,“ Thin Solid Films, vol. 398-399, 2001, pp. 326-330.
[49]C. M. Flannery, C. Murray, I. Streiter and S. E. Schulz, “Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves,” Thin Solid Films, vol. 388, 2001, pp. 1-4.
[50]黃敏峰,雷射超音波技術於化學汽相沈積鑽石薄膜材料參數之量測,博士論文,長庚大學,桃園縣, 2005。
[51]蔡坤義,雷射超音波技術於壓電材料特性之量測,博士論文,長庚大學,桃園縣, 2005。
[52]湯盛瑋,固態氧化物燃料電池層狀結構之非破壞量測技術開發,博士論文,台北科技大學,台北市,2009。
[53]J. D. Aussel and J. P. Monchalin, “Precision laser-ultrasonic velocity measurement and elastic constant determination,” Ultrasonics, vol.27, 1989, pp. 165-177.
[54]T. Matsumoto, T. Nose, Y. Nagata, K. Kawashima, T. Yamada H. Nakano and S. Nagai, “Measurement of high-temperature elastic properties of ceramics using a laser ultrasonic method,” Journal of the American Ceramic Society, vol.84, no. 7, 2001, pp. 1521-1525.
[55]E. Fraizier, M. H. Nadal and R. Oltra, “Evaluation of viscoelastic constants of metallic materials by laser-ultrasonics at elevating temperature,” Ultrasonics, vol. 40, 2002, pp. 543-547.
[56]J. A. Nelder and R. Mead, “A simplex method for function minimization,” The Computer Journal, vol. 7, 1965, pp. 308-313.
[57]Q. Y. Duan, V. K. Gupta and S. Sorooshian, “Shuffled Complex Evolution Approach for Effective and Efficient Global Minimization,” Journal of Optimization Theory and Application, vol. 76, no. 3, 1993, pp.501-521.
[58]M. Kachanov, I. Tsukrov and B. Shafiro, “Effective moduli of solids with cavities of various shapes,” Applied Mechanics Reviews, vol. 47, no. 1, 1994, pp. 151-174.
[59]http://www.matweb.com Material property data
[60]http://www.bssa.org.uk/topics.php?article=139 Elevated temperature physical properties of stainless steels

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊