跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李兆棠
研究生(外文):Chao-Tang Li
論文名稱:應用FPGA於即時手勢辨識系統之設計與實作
論文名稱(外文):Design and Implementation of FPGA-based Real-Time Hand Gesture Recognition Systems
指導教授:陳文輝陳文輝引用關係
口試委員:蔡岳廷林穎宏楊俊哲曾傳蘆陳昭榮周至如鄭泉泙
口試日期:2012-06-25
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:182
中文關鍵詞:現場可規劃邏輯閘陣列人機互動手勢辨識移動偵測光流法
外文關鍵詞:Field Programmable Gate Array (FPGA)Human-Computer InteractionHand Gesture RecognitionMotion DetectionOptical Flow
相關次數:
  • 被引用被引用:1
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在應用硬體實作技術,建立一套即時手勢辨識系統,作為非接觸式人機互動之操作介面。以往在手勢辨識系統之研究,大多以個人電腦為運算平台,開發手勢辨識演算法。這些方法雖然可以藉由大量訓練樣本與複雜計算流程,提昇辨識準確率,但無法滿足即時辨識應用之需求。本研究提出結合區塊光流梯度與膚色偵測之方法,簡化手部移動偵測之計算程序,發展出適用於硬體實作且不受手形變化影響之動態位移偵測技術,同時整合卡爾曼濾波器與有限狀態機於辨識系統中,使本文所提出之系統能有效達成準確且快速之辨識效果。本研究以軟硬體共同設計進行系統架構規劃,實作於Altera Cyclone II EP2C70開發平台,作為本文所提方法之驗證。在僅耗費25%邏輯單元之系統實作下,即可達成解析度640×480像素,每秒30幅影像之動態手勢辨識速度。在辨識準確率方面,以四種不同場景進行六種手勢測試,平均辨識率於室內環境下為100%,室外環境下為95%。實驗結果顯示,本文所提方法在低複雜之硬體架構下,仍可維持高準確之辨識率。最後,本研究將完成之系統實際應用於電視機之控制,結果亦顯示本文所發展之手勢辨識系統能整合於一般市售家電,提供操作簡便與低成本之人機互動功能。

This study applied hardware implementation techniques to develop a real-time gesture recognition system to act as a non-contact human-computer interaction operation interface. Most previous hand gesture recognition related studies used personal computers as computing platforms to develop hand gesture recognition algorithms. Although these methods may improve recognition accuracy when using a large number of training samples and a complex calculation process, they are insufficient for instant recognition application demands. We used the block gradient-based optical flow method and the skin color detection method to simplify the calculation procedures for hand motion detection to develop a dynamic motion detection technology that is suitable for hardware application and is not influenced by hand shape changes. In addition, we integrated the Kalman filter and a finite state machine into the recognition system to effectively enable our system to achieve accurate and fast identification. We co-designed the hardware and software to conduct system architecture planning and implemented the system in the Altera Cyclone II EP2C70 development platform to verify our proposed method. Under a system implementation that only consumed 25% of the logic elements, we attained a resolution of 640×480 pixels and a dynamic hand gesture recognition speed of 30 frames per second. Regarding recognition accuracy rates, we conducted six gesture tests in four different scenarios. The average recognition rates were 100% for an indoor environment and 95% for an outdoor environment. The experimental results indicated that the proposed method can maintain high accuracy recognition rates despite using low-complexity hardware architecture. Finally, we applied the completed system to television controls, and the results indicated that our hand gesture recognition system can be integrated into general household appliances to provide easy to operate and low cost human-machine interaction capabilities.

中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機與背景 1
1.2 文獻探討 2
1.3 研究方向 5
1.4 研究貢獻 6
1.5 研究限制 7
1.6 論文架構 8
第二章 系統演算流程 9
2.1 影像前處理 9
2.2 手勢特徵擷取 11
2.2.1 膚色特徵偵測 12
2.2.2 形變特徵偵測 15
2.2.3 移動特徵偵測 16
2.3 手勢追蹤 21
2.4 手勢辨識 22
2.4.1 手勢定義 22
2.4.2 手勢分析及解譯 23
第三章 系統模型建立 27
3.1 系統模型 27
3.2 影像前處理演算法設計 29
3.3 特徵擷取演算法設計 31
3.3.1 膚色偵測演算法設計 31
3.3.2 形變及移動偵測演算法設計 32
3.4 手勢追蹤演算法設計 34
3.5 手勢辨識演算法設計 36
第四章 實驗與分析 41
4.1 實驗平台設置及實驗設計 41
4.1.1 手勢測試影像設計 42
4.1.2 參數符號說明 46
4.1.3 手勢目標區定義 48
4.2 實驗分析 52
4.2.1 光流向量與膚色比例於手勢平均誤差距離之影響 52
4.2.2 光流向量與膚色比例於手勢準確率之影響 63
4.2.3 區塊加總值於手勢平均誤差距離與準確率之影響 73
4.2.4 像素角點值於手勢平均誤差距離與準確率之影響 79
4.2.5 目標區計算方法於手勢平均誤差距離與準確率之影響 84
4.3 實例測試 89
4.4 本章結論與建議 91
第五章 系統設計與實作 93
5.1 架構設計概述 93
5.2 系統規劃 94
5.3 系統資料流程 96
5.4 軟硬體共同設計架構 96
5.4.1 硬體設計規劃 99
5.4.2 軟體設計規劃 100
5.4.3 除錯電路設計規劃 104
5.5 硬體演算法實作 106
5.5.1 中值濾波器實作 108
5.5.2 膚色偵測實作 109
5.5.3 光流偵測實作 110
5.6 軟體演算法實作 115
5.6.1 卡爾曼濾波器實作 115
5.6.2 有限狀態機實作 117
5.7 系統實作結果 120
5.7.1 系統驗證 123
5.8 應用實例 124
5.8.1 系統連結之控制命令規劃 124
5.8.2 階層式手勢控制命令設計 126
5.8.3 系統與電視機上盒連結 127
5.8.4 系統與多媒體播放器連結 131
5.8.5 本章結論 133
第六章 結論與未來研究方向 134
6.1 結論 134
6.2 未來研究方向 135
參考文獻 136
附錄 140
A α與β對於L2之影響彙整 141
B α與β對於H ̃之影響彙整 161
C 符號彙編 181
D 英文縮寫彙整 183
作者簡介 184



[1] 許倫維,即時性連續手勢追蹤與辨識,碩士論文,國立臺北科技大學資訊工程系,台北,2006。
[2] 李經寧,即時手勢辨識系統應用於機上盒控制,碩士論文,國立中央大學資訊工程學系,桃園,2009。
[3] 劉東樺,以適應性膚色偵測與動態歷史影像為基礎之即時手勢辨識系統,碩士論文,大同大學資訊工程研究所,台北,2009。
[4] H. Xu, X. Hou, R. Su and Q. Ni, "Real-time hand gesture recognition system based on Associative Processors," IEEE International Conference on Computer Science and Information Technology, 2009, pp. 14-18.
[5] C. H. Yean, and S. Yu, "Developing a smart camera for gesture recognition in HCI applications," IEEE International Conference on Consumer Electronics, 2009, pp. 994-998.
[6] M. Yeasin and S. Chaudhuri, "Visual understanding of dynamic hand gestures," Pattern Recognit, vol. 33, no. 11, 2000, pp. 1805-1817.
[7] Y. Liu and P. Zhang, "Vision-based human-computer system using hand gestures," Proceedings of the International Conference on Computational Intelligence and Security, 2009, pp. 529-532.
[8] D. Lee and Y. Park, "Vision-based remote control system by motion detection and open finger counting," IEEE Transactions on Consumer Electronics, vol. 55, no. 4, 2009, pp. 2308-2313.
[9] S. K. Singh, D. Chauhan, M. Vatsa and R. Singh, "A robust skin color based face detection algorithm," Tamkang Journal of Science and Engineering, vol. 6, no. 4, 2003, pp. 227-234.
[10] Y. J. Lee and D. H. Lee, "Research on detecting face and hands for motion-based game using web camera," Proceedings of the International Conference on Security Technology, 2008, pp. 7-12.
[11] A. Rosenfeld and E. Johnston, "Angle detection on digital curves," IEEE Transactions on Computers, vol. 22, no. 9, pp. 875-878, 1973.
[12] T.H. Sun, "K-cosine corner detection," Journal of Computers, vol. 3, no. 7, 2008, pp. 16-22.
[13] F. S. Chen, C. M. Fu and C. L. Huang, "Hand gesture recognition using a real-time tracking method and hidden markov models," Image and Vision Computing, vol. 21, no. 8, 2003, pp. 745-758.
[14] H. J. Kim, J. S. Lee and J. H. Park, "Dynamic hand gesture recognition using a CNN model with 3D receptive fields," Proceedings of the International Conference on Neural Network and Signal Processing, 2008, pp. 14-19.
[15] V. I. Pavlovic, R. Sharma and T. S. Huang, "Visual interpretation of hand gestures for human-computer interaction: A review," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, 1997, pp. 677-695.
[16] K. G. Derpanis, A Review of Vision-Based Hand Gestures, Internal Report, Department of Computer Science. York University, February, 2004.
[17] S. Mitra and T. Acharya, "Gesture recognition: A survey," IEEE Transactions on Systems, Man and Cybernetics–Part C: Applications and Reviews, vol. 37, no. 3, 2007, pp. 311-324.
[18] R. Hassanpour, S. Wong and A. Shahbahrami, "Vision-based hand gesture recognition for human computer interaction: A review," Proceedings of the Interfaces and Human Computer Interaction, Amsterdam, July 2008, pp. 125-134.
[19] G. R. S. Murthy and R. S. Jadon, "A review of vision based hand gestures recognition," International Journal of Information Technology and Knowledge Management, vol. 2, No. 2, 2009, pp. 405-410
[20] Q. Chen, N. D. Georganas and E. M. Petriu, "Real-time vision-based hand gesture recognition using haar-like features," Proceedings of the International Conference on nstrumentation and Measurement Technology, 2007, pp. 1-6.
[21] T. Tsui and Y. Shi, "An FPGA-based smart camera for gesture analysis for healthcare applications," Proceedings of the International Conference on Consumer Electronics, 2008, pp. 1-2.
[22] F. A. Bertsch and V. V. Hafner, "Real-time dynamic visual gesture recognition in human-robot interaction," Proceedings of the International Conference on Humanoid Robots, 2009, pp. 447-453.
[23] M. Sen, I. Corretjer, F. Haim, S. Saha, S.S. Bhattacharyya, J. Schlessman and W. Wolf, "Computer vision on FPGAs: Design methodology and its application to gesture recognition," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 133-140.
[24] Douglas J. Smith, HDL Chip Design: A practical guide for designing, synthesizing and simulating ASICs and FPGAs using VHDL or Verilog, Doone Pubns, 1998.
[25] Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with Verilog Design, McGraw-Hill, 2007.
[26] T. A. Nodes and N. C. Gallagher, "Median filters: some modifications and their properties," IEEE Transactions on Speech and Signal Processing, vol. 30, 1982, pp. 739-746
[27] H. L. Eng and K. K. Ma, "Noise adaptive soft-switching median filter," IEEE Transactions on Image Process, vol. 10, no. 2 , 2001, pp. 242-251.
[28] G. L. Bates and S. Nooshabadi, "FPGA implementation of a median filter," Proceedings of the IEEE International Conference Speech and Image Technologies for Computing and Telecommunications, vol. 2, 1997, pp. 437-440.
[29] A. Albiol, L. Torres and E. J. Delp, "Optimum color spaces for skin detection," Proceedings of the IEEE International Conference on Image Processing, Thessaloniki Greece, vol. 1, Oct. 2001, pp. 122-124.
[30] R. L. Hsu, M. Abdel-Mottaleb and A. K. Jain, "Face detection in color images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, 2002, pp. 696-706.
[31] P. S. Hiremath and A. Danti, "Detection of multiple faces in an image using skin color information and lines-of-separability face model," International Journal of Pattern Recognition and Artificial, vol. 20, no. 1, 2006, pp. 39-61.
[32] G. R. Bradski, "Computer vision face tracking for use in a perceptual user interface," Intel Technology Journal, Q2 1998, pp. 705-740.
[33] M. Isard and A. Blake, "Condensation—conditional density propagation for visual tracking," International journal of computer vision, vol. 29, no. 1, 1998, pp. 5-28.
[34] K. Nummiaro, E. Koller-Meier and L. Van Gool, "An adaptive color-based particle filter," Image and Vision Computing, vol. 21, no. 1, 2003, pp. 99-110.
[35] J. L. Barron, D. J. Fleet and S. S. Beauchemin," Performance of optical flow techniques," International Journal of Computer Vision, vol. 12, no. 1, 1994, pp. 43-77.
[36] B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," Proceedings of the 7th International Joint Conference on Artificial Intelligence, 1981, pp. 674-679.
[37] B. K. P. Horn and B. G. Schunck, "Determining optical flow," Artificial Intelligence, vol. 17, 1981, pp. 185-203.
[38] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Transaction of the ASME - Journal of Basic Engineering, vol. 82, Mar. 1960, pp. 35-45.
[39] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach, Prentice hall, 2010.
[40] L. Jetto, S. Longhi and G. Venturini, "Development and experimental validation of an adaptive extended kalman filter for the localization of mobile robots," IEEE Transactions on Robotics and Automation, vol. 15, no. 2, 1999, pp. 219-229.
[41] Terasic Technologies Inc., Altera DE2-70 Board, 2012.
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=53&No=226
[42] 曾仁溥,應用多重演算法在FPGA系統設計之軟硬體分割,碩士論文,國立臺北科技大學電腦通訊與控制研究所,台北,2005。
[43] 鄭育旻,嵌入式多處理器FPGA系統之軟硬體分割技術,碩士論文,國立臺北科技大學電腦通訊與控制研究所,台北,2006。
[44] 范揚興,嵌入式多處理器系統之軟硬體分割方法論,博士論文,國立臺北科技大學電腦通訊與控制研究所,台北,2009。
[45] 鄧智鴻,多媒體嵌入式系統之並行排程與成本最佳化設計,碩士論文,國立台灣大學資訊工程學研究所,台北,2008。
[46] 李建興,基於 SOPC影像處理驗證平台之設計與實作,碩士論文,國立臺北科技大學機電整合研究所,台北,2008。
[47] 蕭鴻森,即時視訊處理架構之軟硬體共同設計,碩士論文,國立台灣大學電機工程學研究所,台北,2009。
[48] 黃志勝,基於FPGA 的嵌入式視覺伺服系統之設計與實現,碩士論文,國立台灣大學電機工程學研究所,台北,2010。
[49] J. Schlessman, C. Y. Chen, B. Ozer, K. Fujino, K. Itoh and W. Wolf, "Hardware/software co-design of an FPGA-based embedded tracking system," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006, pp. 123-130.
[50] J. A. Kalomiros and J. Lygouras, "Design and evaluation of a hardware/software FPGA-based system for fast image processing," Microprocessors and Microsystems, vol. 32, no. 2, Mar. 2008, pp. 95-106.
[51] Rec. ITU-R BT.601-7, "Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios," 2011.
http://www.itu.int/rec/R-REC-BT.601-7-201103-I/en
[52] Rec. ITU-R BT.656-5, "Interface for digital component video signals in 525-line and 625-line television systems operating at the 4:2:2 level of Recommendation ITU-R BT.601," 2007.
http://www.itu.int/rec/R-REC-BT.656-5-200712-I/en
[53] Analog Devices Inc., 10-Bit 4× Oversampling SDTV Video Decoder, 2012.
http://www.analog.com/static/imported-files/data_sheets/ADV7180.pdf
[54] Altera Corporation, Quartus II Handbook Version 11.0, 2011.
http://www.Altera.com/literature/lit-qts.jsp
[55] Altera Corporation, Using MicroC/OS-II RTOS with the Nios II Processor Tutorial, 2011.
http://www.Altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf
[56] Altera Corporation, Embedded Design Handbook, 2011.
http://www.Altera.com/literature/lit-nio2.jsp
[57] Micrium Corporate, μC/OS-II Kernel, 2011.
http://micrium.com/page/products/rtos/os-ii


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊