跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 03:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李郭昱
研究生(外文):Kuo-Yu Lee
論文名稱:CMOS-MEMS探針晶片之研製
論文名稱(外文):Development of CMOS-MEMS Probe Chip
指導教授:黃榮堂黃榮堂引用關係
口試委員:楊龍杰張培仁林招松莊賀喬李春穎
口試日期:2012-07-11
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:103
中文關鍵詞:CMOS-MEMS無電解電鍍鎳探針
外文關鍵詞:CMOS-MEMSElectroless Nicke PlatingProbe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用台積電0.35 μm 2P4M標準製程來設計CMOS-MEMS探針晶片,並搭配後續的微機電技術加工晶片,如微影製程、無電解電鍍鎳製程、研磨製程、乾蝕刻製程。在晶片中具有矽貫穿孔(TSV)封裝結構,並且結合CMOS製程中既有的多層內連接金屬層增加佈線的方便性,進一步可納入線路補償的被動元件或訊號處理電路於佈局之中,增加測量訊號的頻寬與品質。目前為止,以微機電技術製作之探針存在著無法與CMOS製程融合的缺點,而無法降低測試的成本。本研究成功製作出直徑90 μm、深度250 μm的矽貫穿孔,且以電鑄的方式填充銅金屬當作連接外部轉接板之線路。利用有限元素法設計探針形狀及規格,並結合類LIGA厚膜光阻製程及無電解電鍍鎳技術,沉積鎳磷合金使探針懸臂厚度增加來加強其支撐強度。當探針懸臂經過無電解電鍍鎳沉積一段時間,表面會不平均,所以必須經研磨製程提升每層結構之共面度。最後藉由該乾蝕刻製程(RIE、ICP-RIE)來釋放探針結構,成功的製作出一體成型之探針晶片。另外溼蝕刻(KOH)也成功用於蝕刻探針懸臂的變形區域。在本論文中所使用的無電解電鍍鎳為中磷,磷含量為7.436 wt%;楊氏係數量測值為101GP,退火後增加20 GPa,硬度也從3.8 GPa變成7.33 GPa;平均電阻率為2.13 x 10-6 Ω-m。新式懸臂探針在探針尖端位移量40 μm時有0.0065 N的反力,彈簧常數為160 N/m。

In this study, we use the standard TSMC 0.35 μm 2P4M process and MEMS post processing fabricate to design CMOS-MEMS probe chip. MEMS post processing involves the following steps such as lithography process, electroless nickel plating process, grinding process and dry etching process. The probe chip has through silicon via (TSV) package structure, and the combination of CMOS process within the multi-layer interconnections, which could assist the connection between the probes head the external devices, and reduce the difficulty of wiring layout. In addition, passive components or circuits could be integrated with the CMOS chip to improve the frequency bandwidth and measuring quality. So far, MEMS probes exist shortcomings that are not able to be integrated with the CMOS process, and the testing cost is high. The study successfully shows the fabrication of TSV model with the volume of 90 x 90 x 250 μm3. The model was electroformed with copper as interconnections. The finite element method was adopted to design of probe shapes and sizes. The LIGA-like thick photoresist process and electroless nickle plating technique were used in this study, Ni-P alloy to increase the thickness of the cantilever probe to strengthen its support strength is also applied. When the probe cantilever grows thick through the electroless nickel plating with longer deposition time, the uneven surface appeared. Each floor structure is polished to achieve the surface coplanarity. Finally, the probes structure were released by the dry etching process(RIE, ICP-RIE), and this study successfully fabricated a monolithic probe chip. It was also successfully to release the structure of probes by using wet etching(KOH). In this paper, the 7.436% phosphorus in the EN probe was detected by EDS. The Young’s module of EN was about 100 GPa; the hardness was 3.825 GPa. After using annealing process in the probe, the Young’s module of EN was increase 20 GPa ; the hardness was increase 2 times. The resistivity of the EN probe was 2.13 x 10-6 Ω-m. The reaction force of new design cantilever probe was 0.0065 N when the displacement of the probe tip was 40 μm, and the spring constant was 160 N/m.

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究目標 3
第二章 文獻探討 4
2.1 國內外微機電探針卡相關研究發展狀況 4
2.2 國內外矽貫穿孔部分應用於MEMS封裝相關研究發展狀況.. 9
2.3 參考文獻整理探討 12
第三章 CMOS-MEMS探針晶片設計與製作流程 13
3.1 探針晶片設計實際流程 13
3.2 設計原理(懸臂樑) 15
3.3 探針設計與模擬 16
3.3.1 懸臂式探針結構 17
3.3.2 新式懸臂探針結構 19
3.4 探針晶片製程實際流程 21
3.5 探針晶片簡介 26
3.5.1 探針晶片佈局 26
3.5.2 探針晶片及探針卡結構 26
第四章 無電解電鍍製程 30
4.1 無電解電鍍簡介 30
4.2 無電解電鍍鎳 31
4.2.1 無電解電鍍鎳之沿革 31
4.2.2 無電鍍電鎳反應原理 32
4.2.3 無電解電鍍鎳的物理特性 33
4.3 化鎳浸金製程原理 35
4.4 化鎳浸金流程簡介 36
4.4.1 酸洗前處理 (Surface preparation) 36
4.4.2 鋅置換 (Zincating) 37
4.4.3 化學鎳 (Electroless Nickel) 38
4.4.4 化鎳浸金 (Electroless Nickel and Immersion Gold) 40
第五章 實驗結果與討論 41
5.1 矽貫穿孔製程 41
5.1.1 矽貫穿孔深蝕刻 41
5.1.2 矽貫穿孔研磨及填充金屬 45
5.2 探針結構製程 49
5.2.1 探針懸臂製作 50
5.2.2 探針尖端製作 52
5.2.3 光阻去除 54
5.3 探針結構釋放製程 56
5.4 探針製作問題探討 61
5.4.1 懸臂翹曲現象 61
5.4.2 探針接觸點製作 64
5.4.3 利用KOH釋放結構 65
5.5 探針性質量測 67
5.5.1 探針結構成分量測 67
5.5.2 機械性質量測 70
5.5.3 阻值量測 72
5.5.4 針壓量測 73
5.5.4.1 量測機台介紹 73
5.5.4.2 探針力量量測 76
第六章 CMOS-MEMS探針晶片之延伸應用 80
6.1 CMOS-MEMS RF探針晶片 80
6.2 RF探針設計與模擬 81
6.3 傳輸線匹配損失之模擬 84
6.4 RF探針製程實驗 87
6.5 探針之S參數量測結果 92
第七章 結論與未來研究方向 94
7.1 結論 94
7.2 未來研究方向 95
參考文獻 98


[1] International Technology Roadmap for Semiconductors 2011, Test and Test Equipment, pp.19, 33.
[2] W. Chen, "Backend to the Front Line," Semiconductor Wafer Test Workshop, San Diego, June 12, 2011.
[3] N. Khan, etc., "Development of 3-D silicon module with TSV for system in packaging," IEEE Transactions on Components and Packaging Technologies, vol. 33, no. 1, March 2010, pp. 4.
[4] Y. Yoshimura, etc., "Through-silicon via interconnection for 3D integration using room-temperature bonding," IEEE Transactions on Components and Packaging Technologies, vol. 32, no. 4, November 2009, pp. 750.
[5] N. Ranganathan, D. Y. Lee, L. Ebin, N. Balasubramanian, K. Prasad, and K. L. Pey, "The development of a tapered silicon micro-micromachining process for 3D microsystems packaging," Journal of Micromechanics and Microengineering, vol. 18, no. 11, 2008, 115028 (8pp).
[6] H. M. Tong, "3D packaging overview," SemiCon’08 驅動下一代IC:SiP的新興技術-TSV, 10 September, 2008.
[7] W. Radermacher, "Test of TSV-based 3D-IC," SemiCon’08 驅動下一代IC:SiP的新興技術-TSV, 10 September, 2008.
[8] Eric Beyne, "TSV technology overview," SemiCon’08 驅動下一代IC:SiP的新興技術-TSV, 10 September, 2008.
[9] D. W. Lee and T. Ono, "Microprobe array with electrical interconnection for thermal imaging and data storage," Journal of MEMS, vol. 11, issue 3, 2002, pp. 215-221.
[10] M. Beiley and J. Leung, "A micromachined array probe card-characterization," IEEE Transaction on computer, packaging and manufacturing technology-Part A, vol.15, no.1, 1995, pp. 184-191.
[11] Y. Zhang and Y. Zhang, "A new MEMS wafer probe card," MEMS 1997, Nagoya, Japan, January 1997, pp. 395-399.
[12] Y. Zhang and Y. Zhang, "Thermally actuated microprobes for a new wafer probe card," Journal of MEMS, vol. 8, issue 1, 1999, pp. 43-49.
[13] I. Takahiro and R. Sawada and E. Higurashi, "Fabrication of micro IC probe for LSI testing," Sensors and Actuators A: Physical, vol. 80, no. 2, 2000, pp. 126-131.
[14] D. S. Lee and J. Y. Park, "Fabrication of a bump-type Si probe," Microprocesses and Nanotechnology Conference, Tokyo, Japan, July 2000, pp. 76-77.
[15] R. B. Marcus, "A new coiled microspring contact technology," 2001 Electronic Components and Technology Conference, St. Petersburg, Florida, June 2001, pp. 1227-1232.
[16] B. H. Kim and S. J. Park, "Fabrication of nickel electroplated cantilever-type MEMS probe card with through-hole interconnection," Microprocesses an Nanotechnology Conference, Tokyo, Japan, October 2003, pp. 170-171.
[17] B. H. Kim and S. Park, "A novel MEMS silicon probe card," MEMS 2002, Las Vegas, Nevada, January 2002, pp. 368-371.
[18] K. Kataoka and S. Kawamura, "Low contact-force and compliant MEMS probe card utilizing fritting contact," MEMS 2002, Las Vegas, Nevada, January 2002, pp. 364-367.
[19] K. Shingo and K. Kataoka, "Design and fabrication of an electrostatically actuated MEMS probe card," Actuators and Microsystems, 12th International Conference, Boston, Massachusetts, vol. 2, June 2003, pp. 1522-1525.
[20] Y. Cho and T. Kuki, "Si-based micro probe card with sharp knife-edged tips combined metal deposition," Actuators and Microsystems, 12th International Conference, Boston, Massachusetts, vol. 1, June 2003, pp. 774-777 .
[21] K. Kataoka and T. Itoh, "Multi-layer electroplated micro-spring array for MEMS probe card," MEMS 2004, Maastricht, The Netherlands, January 2004, pp. 733-736.
[22] S. H. Lee and B. C. Kim, "Curled micro-cantilevers using benzocyclobutene polymer and Mo for wafer level probing,” Sensors and Actuators A: Physical, vol. 121, issue 2, 2005, p.p. 472-479.
[23] Y. M. Kim and H. C. Yoon, "Silicon micro-probe card using porous silicon micromachining technology," ETRI Journal, vol. 27, no. 4, August 2005, p.p. 433-438.
[24] T. Namazu, Y. Tashiro, and S. Inoue, "Ti–Ni shape memory alloy film-actuated microstructures for a MEMS probe card," Journal of Micromechanics and Microengineering, vol. 17, no. 1, 2007, pp. 154-162.
[25] S. H. Choe, S. Fujimoto, S. Tanaka, and M. Esashi, "A matched expansion probe card for high temperature LSI testing," The 13th International Conference on Solid-state Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9, 2005, pp. 1259-1262.
[26] S. H. Choe, S. Tanaka and M. Esashi, "A matched expansion MEMS probecard with low CTE LTCC substrate," Proceedings - International Test Conference, 2007, art. no. 4437618.
[27] S. Tanaka, S. Fujimoto, O. Ito, S. H. Choe, and M. Esashi, "Fabrication of microprobes on a ultrathick glass substrate with narrow-pitch electrical feedthroughs for next-generation LSI burn-in tetts," MEMS 2008, Tucson, AZ, USA, January 13-17, 2008, pp. 347-350.
[28] F. Wang, X. Li, and S. Feng, "A MEMS probe card with 2D dense-arrayed ‘hoe’-shaped metal tips," Journal of Micromechanics and Microengineering, vol. 18, no. 5, 2008, pp. 1-8.
[29] F. Wang, X. Li, R. Cheng, H. Yang, Y. Wang, S. Feng, X. Ge, T. Chen, L. Chen, and L. Sun, " Two-dimensional dense-arrayed pprobe-cards with a hoe-shaped probing-tip micromachining technique," MEMS 2008, Tucson, AZ, USA, January 13-17, 2008, pp. 343-346.
[30] F. Wang, R. Cheng, and X. Li, "MEMS vertical probe cards with ultra densely arrayed metal probes for wafer-level IC testing," Journal of Microelectromechanical systems, vol. 18, no. 4, August, 2009, pp. 933-941.
[31] J. Liu, M. Noman, J. A. Bain, T. E. Schlesinger, and G. K. Fedder, "CMOS-MEMS probes for reconfigurable IC’s," MEMS 2008, January 2008, pp. 517-518.
[32] F. Wang, X. Li, Y. Wang, and S. Feng, "Simultaneous formation of through wafer electrical interconnects and highly dense & uniform nickel tips for silicon-cantilever probe-cards," Transducers 2007 - 4th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, art. no. 4300567, pp. 2051-2054.
[33] F. Wang, X. Li, and S. Feng, "Microcantilever probe cards with silicon and nickel composite micromachining technique for wafer-level burn-in testing," IEEE Transactions on Advanced Packaging, vol. 32, no. 2, May, 2009, pp. 468-477.
[34] F. Wang, X. Li, R. Cheng, K. Jiang, and S. Feng, "Silicon cantilever arrays with by-pass metal through-silicon-via (TSV) tips for micromachined IC testing probe cards," Journal of Microelectronic Engineering, vol. 86, issue 11, 2009, pp. 2211-2216.
[35] B. H. Kim, and J. B. Kim, "Design and fabrication of a highly manufacturable MEMS probe card for high speed testing," Journal of Micromechanics and Microengineering, vol. 18, no. 7, 2008, 075031 (8pp).
[36] B. H. Kim, B. J. Park, and J. B. Kim, "Process effects of double step DRIE and Ni-Co electroplating for a trench-type cantilever probe for a fine-pitched MEMS probe card," Sensors and Actuators A: Physical, vol 152, issue 2, 2009, pp. 252-260.
[37] B. H. Kim, and J. B. Kim, "Fabrication of a high aspect ratio thick silicon wafer mold and electroplating using flipchip bonding for MEMS applications," Journal of Micromechanics and Microengineering, vol. 19, no. 6, 2009, 065024 (10pp).
[38] B. H. Kim, J. B. Kim, and J. H. Kim, "A highly manufacturable large area array MEMS probe card using electroplating and flipchip bonding," IEEE Transactions Actions on Industrial Electronics, vol. 56, no. 4, April, 2009, pp.1079-1085.
[39] X. Jing, D. Chen, C. Huang, X. Chen, J. Miao, J. Liu, and J. Zhu, "Elastic MEMS probe card based on the PDMS substrate," Journal of Micromechanics and Microengineering, vol. 20, no 5, 2010, 055038 (7pp).
[40] C. J. Lin, M. T. Lin, S. P. Wu, F. G. Tseng, "High density and through wafer copper interconnections and solder bumps for MEMS wafer-level packaging," Microsystem Technologies, vol. 10, no. 6-7, 2004, pp. 517–521.
[41] C. S. Premachandran, Rangnathan N., S. Mohanraj, C. S. Choong, M. K. Iyer, "A vertical wafer level packaging using through hole filled via interconnect by lift off polymer method for MEMS and 3D stacking applications," Electronic Components and Technology Conference, 31 May-3 June, 2005, pp. 1094-1098.
[42] C. W. Lin, H. A. Yang, W. C. Wang, and W. L. Fang, "Thru-wafer interconnect for SOI-MEMS 3D wafer-level hermetic packaging," Transducers and Eurosensors 2007 - 4th International Conference on Solid-State Sensors, Actuators and Microsystems, art. no. 4300582, pp. 2111-2114.
[43] N. Ranganathan, K. Prasad, N Balasubramanian, and K. L. Pey, "A study of thermo-mechanical stress and its impact on through-silicon vias," Journal of Micromechanics and Microengineering, vol. 18, no. 7, 2008, 075018 (13pp).
[44] 楊聰仁,無電鍍鎳及其應用,國璋出版社,1987。
[45] 楊聰仁,無電鍍之介紹,(逢甲大學材料科技,第3期,第9~19頁,七十三年四月)。
[46] 柯賢文,表面與薄膜處理技術,全華出版公司,2005。
[47] 台灣電路板產業學院,電路板濕製程全書,全華科技圖書股份有限公司。
[48] 張雅文,化鎳浸金手冊,樺金科技。
[49] J. Tajadod, H. Hendriks, J. Klocke, A. Morales, and H. Rapuano, "Electrophoretic photoresist application for high topography wafer surfaces," 2003 International Conference on Compound Semiconductor Manufacturing., (4pp).
[50] http://www.ndl.org.tw
[51] 刘世民,燕山大学材料科学与工程学院,SEM SEM-EDS 理论与实践(2), 2006。
[52] http://www.cmicro.com/products/engineering-probes
[53] http://www.ggb.com/


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top