跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱翊麟
研究生(外文):I-Lin Chu
論文名稱:使用負相關影像在雷射光班消除上的研究
論文名稱(外文):Speckle Suppression by Integrated of Fully Developed Negatively Correlated Patterns in Coherent Imaging
指導教授:徐巍峰
口試委員:陸儀斌林正峰林晃嚴楊恆隆
口試日期:2012-07-31
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:72
中文關鍵詞:雷射光斑光斑消除空間光調變器完全散射光斑
外文關鍵詞:Laser SpeckleSpeckle SuppressionSpatial Light ModulatorFully Developed Speckle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在一個同調光學成像系統中,當物體先成像於作動中的擴散片上,而後便能投影一張已經過光斑抑制的圖形出來。當我們使用一個空間光調變器(SLM) 來取代持續作動的擴散片時,也可以達到消光斑的功用且不需要額外的運動機制。所以把M個隨機相位陣列以特定順序及在特地時間內撥放於空間光調變器上,當播放時間控制於一個檢知器的積分時間內時,我們可以得到一個累加影像強度,此影像強度來自於M個無關連的影像所加總而來,同時此累加影像的相關係數Cf 被有效的降低至1/√M,藉此便能達到光斑抑制的效果。
本篇論文展示了,在理論上和模擬上,當兩個為"完全散射光斑"的基元光斑圖樣被賦予彼此為負相關特性時,我們可以在其加總的圖樣上得到一個被大幅降低的相關係數Cf 。因此我們達到了一個很好的目標,在相關係數位於[-0.3, -0.25]的範圍內所找出的基元圖樣,其疊加10張負相關圖樣後得到的Cf,比相同數量疊加但彼此為非相關的圖樣,數值小了48%以上。
關於負相關的圖樣, 我們可以利用空間光調變器及繞射光學元件來實現它。而且應用範圍可用於抑制光斑雜訊在數位全像術,雷射投影顯示器及全像投影顯示器上,都能得到很有效的結果。

A coherent imaging system images a frame or an object onto a changing diffuser and projects the resulting pattern which generally contains speckles. Using a spatial light modulator (SLM) as the changing diffuser, the speckles in the pattern are suppressed without the need for any other mechanisms. With M random phasor arrays being displayed in the SLM during the integration time of a detector, a suppression factor (Cf) of speckles, 1/√M, is achievable in the projected pattern, which is the sum of the intensity of M uncorrelated patterns.
This paper shows both theoretically and in simulations that the correlation coefficient Cf of the sum pattern was considerably reduced when two elementary patterns with fully developed speckles were negatively correlated. With the correlation coefficients of the elementary patterns found at the range of [-0.3, -0.25], the Cf of the sum of 10 negatively-correlated speckle patterns was achieving a 48% lower than the Cf of the sum of 10 uncorrelated speckle patterns.
The negatively correlated patterns can be implemented by using spatial light modulators or diffractive optical elements, and are used to suppress speckle noise in digital holography, laser projection display, and holographic display projections with relatively high efficiency.

摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
第一章 緒論 1
1.1 前言 1
1.2 雷射光源應用於顯示系統的技術 2
1.2.1 雷射點掃描顯示技術 2
1.2.2 雷射線掃描顯示技術 3
1.2.3 雷射全幅投影顯示技術 4
1.3 論文動機 5
1.4 論文架構介紹 6
第二章 運用於雷射投影系統的光斑抑制方法 8
2.1 光斑現象的直觀描述 8
2.2 雷射投影系統中的光斑抑制方法 10
2.2.1 偏振多樣性 10
2.2.2 運動的屏幕 11
2.2.3 波長多樣性 12
2.2.4 角度多樣性 13
2.2.5 變化的散射體投影到屏幕上 14
2.2.6 複合光斑抑制技術 17
第三章 光學光斑的統計性質的理論背景 18
3.1 隨機合成相幅矢量的實部與虛部的特性 18
3.2 具大量獨立步數的隨機行走 19
3.3 隨機相幅矢量和之和 20
3.4 強度上的統計 20
3.5 完全散射光斑圖樣和的強度統計 22
3.5.1 兩個獨立光斑強度的和 22
3.5.2 N個獨立光斑強度的和 24
3.6 複合光斑的統計 25
3.6.1 負指數強度光斑所驅動的光斑 25
3.6.2 Γ指數強度光斑所驅動的光斑 26
3.7 總結及研究動機 26
第四章 光斑圖樣的光斑對比和相關係數之探討 30
4.1 兩光斑強度間的相關係數與光斑對比的討論 31
4.2 觀察於投影幕反射之後的複合光斑強度統計 36
4-3 結論 40
第五章 模擬與分析討論 41
5.1 抑制因子與相關係數的模擬於成像面 41
5.1.1 兩個完全散射光斑圖樣和的抑制因子 42
5.1.2多個完全散射光斑圖樣和的抑制因子 44
5.2 抑制因子與相關係數的模擬於投影屏幕後 48
5.2.1 兩個複合光斑圖樣和的對比度 48
第六章 結論與未來展望 51
6.1 結論 51
6.2 未來展望 52
參考文獻 54
附錄 56

[1]Goodman, J. W., “Some fundamental properties of speckle,” Journal of Optical Society America, Vol. 66, 1145-1150, 1976.
[2]Silverstein, S. D. and M. O’Donnell, “Theory of frequency and temporal compounding in coherent imaging: speckle suppression and image resolution,” Journal of Optical Society America A, Vol. 5, 104-113 (1988).
[3]Goodman, J. W., Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007).
[4]Rojas, J. A. M., J. Alpuente, E. Bolivar, P. Lopez-Espi, S. Vignote, and M. I. Rojas, “Empirical characterization of wood surfaces by means of iterative autocorrelation of laser speckle patterns,” Progress In Electromagnetics Research, Vol. 80, 295-306, 2008.
[5]Iwai, T. and T. Asakura, “Speckle reduction in coherent information processing,” Proceedings of The IEEE, Vol. 84, 765-781, 1996.
[6]Wang, L., T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Applied Optics, Vol. 37, 1770-1775, 1998.
[7]Trisnadi, J. I., “Hadamard speckle contrast reduction,” Optics Letters, Vol. 29, 11-13, 2004.
[8]Qi, F., V. Tavakol, D. Schreurs, and B. Nauwelaers, “Discussion on validity of Hadamard speckle contrast reduction in coherent imaging system,” Progress In Electromagnetics Research, Vol. 104, 125-143, 2010.
[9]Yurlov, V., A. Lapchuk, S. Yun, J. Song, and H. Yang, “Speckle suppression in scanning laser display,” Applied Optics, Vol. 47, 179-187, 2008.
[10]Akram, M. N., V. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Optics Letters, Vol. 35, 444-446, 2010.
[11]Kartashov, V. and M. N. Akram, “Speckle suppression in projection displays by using a motionless changing diffuser,” Journal of Optical Society America A, Vol. 27, 2593-2601, 2010.
[12]Ouyang, G., Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Optics Letters, Vol. 35, 2852-2854, 2010.
[13]Tong, Z., M. N. Akram, and X. Chen, “Speckle reduction using orthogonal arrays in laser projectors,” Applied Optics, Vol. 49, 6425-6429, 2010.
[14]Chang, Y.-S., H. Y. Lin, and W.-F. Hsu, “Speckle suppression by 2D spatial light modulator in laser projection system,” in SID 2011 Symposium, May 15-19, 2011, Los Angeles, paper No. 32.2.
[15]Bay, C., N. Hubner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection,” Optics Letters, Vol. 35, 2230-2232, 2010.
[16]Hsu, W.-F. and C.-F. Yeh, “Speckle suppression in holographic projection displays by temporal integration of diffractive optical elements,” in Digital Holography and Three Dimensional Imaging (DH), May 9-11, 2011, Tokyo, Japan, paper DTuC4.
[17]Buckley, E., “Holographic laser projection,” J. Display Technology, Vol. 7, 135-140, 2011.
[18]Hsu, W.-F., Y.-W. Chen, and Y.-H. Su, “Implementation of phase-shift patterns using a holographic projection system with phase-only diffractive optical elements,” Applied Optics, Vol. 50, 3646-3652, 2011.
[19]Goodman J W., Statistical Optics, New York: John Wiley & Sons, 1985.
[20]Kreyszig, E., Advanced Engineering Mathematics, 9th ed. (John Wiley & Sons, Inc., NY, 2006).
[21]Pedersen, H. M., “Theory of speckle-correlation measurements using nonlinear detectors,” Journal of Optical Society America A, Vol. 1, 850-855, 1984.
[22]Marron, J. and G. M. Morris, “Correlation measurements using clipped laser speckle,” Applied Optics, Vol. 25, 789-793, 1986.
[23]Ogiwara, A. and J. Ohtsubo, “Maximum dynamic range of clipped correlation of integrated laser speckle intensity,” Journal of Optical Society America A, Vol. 5, 403-405, 1988.
[24]Ohtsubo, J. and T. Asakura, “Statistical properties of the sum of partially developed speckle patterns,” Optics Letters, Vol. 1, 98-100, 1977.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top