跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭威典
研究生(外文):Wei Tien Hsiao
論文名稱:添加氮化硼對鎳-鋁合金熔射塗層磨耗特性之研究
論文名稱(外文):A Study on Tribological Behaviors of Boron Nitride Addition Nickel-Aluminum Coatings Deposited using Thermal Spraying
指導教授:蘇程裕蘇程裕引用關係
口試委員:呂明生酈唯誠敖仲寧林中魁周長彬楊哲化
口試日期:2012-01-10
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:熔射塗層氮化硼鎳-鋁磨耗
外文關鍵詞:Thermal SprayCoatingsBoron NitrideNi-AlWear
相關次數:
  • 被引用被引用:3
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在探討添加六方晶氮化硼材料,對鎳-鋁合金熔射塗層機械性質的影響。氮化硼藉由混合和機械研磨的方式混入鎳-鋁合金中,藉由電漿熔射及高速火焰熔射技術於304不?袗?基材上製作成為塗層,以提升塗層的潤滑性質;本研究亦在熔射塗層中添加碳化鎢-鈷材料,以提升塗層的硬度及耐磨耗性質。熔射塗層製作過程中,藉由飛行粒子監控系統取得飛行粒子的溫度及速度資訊;製作完成後的塗層,藉由後續的光學顯微結構分析、掃描式電子顯微結構分析、穿透式電子顯微結構分析、X光繞射成分分析、孔隙率分析、微硬度分析、磨耗試驗及鍵結強度試驗等,以觀察塗層的物理及化學性質。最後的結果呈現,添加六方晶氮化硼後藉由熔射技術製作的複合塗層,摩擦係數可由0.7降至0.3;並且由於熔射過程中,粒子撞擊所產生的高溫及高壓,造成六方晶氮化硼相轉變為非晶質相、Turbostratic相或立方晶相氮化硼,相變化後的塗層具有較為良好的抗滑動磨耗特性。

This paper investigates the effects of adding a hexagonal boron nitride (h-BN) material on the material properties of the thermal sprayed Ni-Al coatings. The h-BN powder was mixed with the Ni-Al powder by blending or ball milling. They were sprayed on SUS304 substrate via plasma spray or high velocity oxygen fuel spray. WC-Co powder was also added into the coating to improve the hardness and the wear resistance. A DPV-2000 was used to monitor the temperature and velocity of the in-flight particles during spraying. Optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, porosity analysis, microhardness test, wear test and bond test were used to examine the properties of the coatings. The results show that the friction coefficient of the coating was reduced from 0.7 to 0.3 by adding h-BN. The high temperature and high pressure during spraying caused the molten or semi-molten droplets impinge harshly onto the substrate, resulting in the transformation from h-BN phase to an amorphous, turbostratic or cubic boron nitride phase. This transformation reflected on a better property of sliding wear resistance.

摘 要 i
ABSTRACT ii
誌謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
第二章 文獻探討 3
2.1. 熔射技術原理 3
2.1.1. 電漿熔射技術 8
2.1.2. 高速火焰熔射技術 9
2.2. 磨耗原理 10
2.2.1. 磨耗種類 11
2.2.2. 磨耗的表面防護 14
2.3. 熔射塗層材料 14
2.3.1. 六方晶氮化硼 14
2.3.2. 鎳-鋁合金 18
2.3.3. 碳化鎢-鈷 20
2.4. 熔射後塗層性質與結構 21
2.5. 添加物對熔射塗層的影響 27
第三章 實驗方法 30
3.1. 粉末原料及試片準備 31
3.2. 飛行粒子觀測及撞擊粒子擷取 33
3.3. 熔射塗層製作 35
3.4. 磨耗試驗 36
3.5. 塗層性質分析 38
3.5.1. 塗層堆積效率分析 38
3.5.2. 光學顯微鏡觀察 38
3.5.3. 掃描式電子顯微鏡觀察 39
3.5.4. 穿透式電子顯微鏡觀察 39
3.5.5. 聚焦式離子束顯微切割儀取樣 40
3.5.6. X光繞射分析 40
3.5.7. 孔隙率分析 40
3.5.8. 微硬度分析 41
3.5.9. 鍵結強度分析 41
第四章 結果與討論 43
4.1. 添加氮化硼材料對電漿熔射鎳-鋁合金塗層的影響 43
4.1.1. 粉末顯微結構 43
4.1.2. 塗層堆積效率 45
4.1.3. 塗層顯微結構 46
4.1.4. X光繞射分析 49
4.2. 添加碳化鎢-鈷對電漿熔射鎳-鋁/氮化硼複合塗層的影響 50
4.2.1. 粉末顯微結構 50
4.2.2. 塗層堆積效率 51
4.2.3. 塗層顯微結構 52
4.3. 添加氮化硼材料對高速火焰熔射鎳-鋁合金塗層的影響 57
4.3.1. 粉末顯微結構 57
4.3.2. 粒子觀察 59
4.3.3. 塗層顯微結構 61
4.3.4. 高速火焰熔射過程對氮化硼結構造成的改變 69
4.4. 磨耗性質 76
第五章 結論 89
第六章 參考文獻 90

[1]S. B. Mishra, S. Prakash and K. Chandra, “Studies on erosion behaviour of plasma sprayed coatings on a Ni-based superalloy”, Wear, vol. 260, 2006, pp. 422–432.
[2]D. Z. Guo, F. L. Li, J. Y. Wang and J. S. Sun, “Effects of post-coating processing on structure and erosive wear characteristics of flame and plasma spray coatings”, Surface and Coatings Technology, vol. 73, 1995, pp. 73-78.
[3]R. A. Mahesh, R. Jayaganthan and S. Prakash, “Oxidation behavior of HVOF sprayed Ni–5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition”, Materials Science and Engineering A, vol. 475, 2008, pp. 327-335.
[4]K. A. Khor, C. T. Chia and Y. W. Gu, “Dynamic mechanical properties of plasma sprayed Ni-based alloys”, Materials Science and Engineering A, vol. 279, 2000, pp. 166-171.
[5]T. Saito and F. Honda, “Low friction behavior of sintered hBN sliding in sodium chloride solution”, Wear, vol. 244, 2000, pp. 132-139.
[6]T. Saito, Y. Imada and F. Honda, “Chemical influence on wear of Si3N4 and hBN in water”, Wear, vol. 236, 1999, pp. 153-158.
[7]Y. Zhang, X. He, J. Han and S. Du, “Combustion synthesis of hexagonal boron-nitride-based ceramics”, Journal of Materials Processing Technology, vol. 116, 2001, pp. 161-164.
[8]T. Saito and F. Honda, “Chemical contribution to friction behavior of sintered hexagonal boron nitride in water”, Wear, vol. 237, 2000, pp. 253-260.
[9]B. S. Schorr, K. J. Stein and A. R. Marder, “Characterization of Thermal Spray Coatings”, Materials Characterization, vol. 42, 1999, pp. 93-100.
[10]H. Xiaoou and L. Yufen, “The Current Situation and Future of Thermal Spraying Industry in China”, International Thermal Spray Conference Proceedings, Osaka, Japan, 2004, pp. 36-40.
[11]C. C. Berndt, “The Origins of Thermal Spray Literature”, Proceedings of the International Thermal Spray Conference, Singapore, 2001, pp. 1351-1360.
[12]P. Fauchais, A. Vardelle and B. Dussoubs, “Quo Vadis Thermal Spray”, Proceedings of the International Thermal Spray Conference, Singapore, 2001, pp. 1-32.
[13]P. Chagnon and P. Fauchais, “Thermal Spraying of Ceramics”, Ceramics International, vol. 10, 1984, pp. 119-131.
[14]H. S. Ingham and A. P. Shepard, Metco, Westbury, NY, USA, 1965, pp. 3.
[15]R. A. Sulit, H. H. J. Vandervelt and V. D. Schaper, “Corrosion Control Using Wire Sprayed Aluminum in the U. S. Navy”, 9th International Thermal Spraying Conference, Hague, Netherlands, 1980, pp. 49-52.
[16]G. R. Bell, “Furnace Fused Sprayed Metal Coatings”, Eighth International Thermal Spraying Conference, Miami Beach, Florida, USA, 1976, pp. 396-406.
[17]L. Moskowitz, “The Effects of Post Heating an HVOF Sprayed Fusible Coating”, Proceedings of the 1st United Thermal Spray Conference, Indianapolis, USA, 1997, pp. 519-525.
[18]R. Klinge, “Sprayed Zinc and Aluminium Coatings for the Protection of Structural Steel in Scandinavia”, Eighth International Thermal Spraying Conference, Miami Beach, Florida, USA, 1976, pp. 203-213.
[19]J. S. Tinnea, “Field Performance of Sprayed Zinc Cathodic Protection Anodes”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, pp. 37-42.
[20]H. Xiaoou and L. Yufen, “The Current Situation and Future of Thermal Spraying Industry in China”, International Thermal Spray Conference Proceedings, Osaka, Japan, 2004, pp. 36-40.
[21]R. Gansert, “Influence of Powder Size in Aluminum Oxide Coatings for Use in the Semiconductor Industry”, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 2003, pp. 159-161.
[22]C. Herbst-Dederichs, “Thermal Spray Solutions for Diesel Engine Piston Rings”, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 2003, pp. 129-188.
[23]G. Barbezat, “Low-Cost High-Performance Coatings Produced by Internal Plasma Spraying for the Production of High Efficiency Engines”, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 2003, pp. 139-142.
[24]D. Cook and M. Zaluzec, “Development of Thermal Spray for Automotive Cylinder Bores”, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 2003, pp. 143-147.
[25]B. J. Gill and R. C. ucker, “Plasma Spray Coating Processes”, Materials Science and Technology, vol. 2, 1986, pp. 207-213.
[26]C. W. Chang and J. Szekely, “Plasma Applications in Metals Processing”, Journal of Metal, vol. 34, 1982, pp. 57-64.
[27]J. B. Wachtman and R. A. Haber, “Ceramic Films and Coating”, Noyes Publications, Park Ridge, NJ, USA, 1993.
[28]I. Kvernes, M. Espeland and O. Norholm, “Plasma Spraying of Alloys and Ceramics”, Scandinavian Journal of Metallurgy, vol. 17, 1988, pp. 8-16.
[29]D. Matejka and B. Benko, “Plasma Spraying of Metallic and Ceramic Materials”, John Wiley & Sons, New York, USA, 1989.
[30]M. Bhusari, “Plasma Spray:The Job Shop Perspective”, Proceedings of the International Thermal Spray Conference, Singapore, 2001, pp. 1289-1302.
[31]E. Pfender, “Fundamental Studies Associated with the Plasma Spray Process”, Proceedings of the National Thermal Spray Conference, Cincinnati, Ohio, USA, 1987, pp. 1-10.
[32]T. Sahraoui, N. E. Fenineche, G. Montavon and C. Coddet, “Wear Behavior of HVOF Sprayed WC-12%Co Coatings vs. Hard Chrome Plating”, International Thermal Spray Conference Proceedings, Osaka, Japan, 2004, pp. 488-491.
[33]T. Morishita, Saitama, S. Osawa and T. Itsukaichi, Gifu, “HVOF Ceramic Coatings”, International Thermal Spray Conference Proceedings, Osaka, Japan, 2004, pp. 464-467.
[34]P. Fauchais, J. F. Coudert, A. and M. Vardelle, A. Grimaud and P. Roumilhac, “State of the Art for the Understanding of the Physical Phenomena Involved in Plasma Spraying at Atmospheric Pressure”, Proceedings of the National Thermal Spray Conference, Cincinnati, Ohio, USA, 1987, pp. 12-19.
[35]R. S. Lima, “Abrasion Behavior of Nanostructured and Conventional Titania Coatings Thermally Sprayed via APS, VPS and HVOF”, International Thermal Spray Conference Proceedings, Osaka, Japan, 2004, pp. 1034-1039.
[36]D. A. Stewart, P. H. Shipway and D. G. Mccartney, “Abrasive Wear Behavior of Conventional and Nanocomposite HVOF-Sprayed WC-Co Coating”, Wear, vol. 225-229, 1999, pp. 789-798.
[37]C. Verdon, A. Karimi and J. L. Martin, “A Study of High Velocity Oxy-Fuel Thermal Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures”, Materials Science and Engineering A, vol. 246, 1998, pp. 11-24.
[38]B. R. Marple and R. S. Lima, “Process Temperature -Hardness -Wear Relationships for HVOF-Sprayed Nanostructured and Conventional Cermet Coatings”, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 2003, pp. 273-282.
[39]R. F. Bunshah, Noyes Publications, Park Ridge, NJ, USA, 2001
[40]H. Herman, S. Sampath and R. McCune, “Thermal Spray:Current Status and Future Trends”, MRS Bulletin, Vol. 25, 2000, pp. 17-25.
[41]T. Koomparkping, S. Damrongrat and P. Niranatlumpong, “Phase Precipitation in NiCoCrAlY Bondcoat at High Temperature”, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 2003, pp. 1631-1634.
[42]E. Cove and R. Cole, “Hypervelocity Application of Tribological Coatings”, Proceedings of the National Thermal Spray Conference, Cincinnati, Ohio, USA, 1987, pp. 123-130.
[43]M. Liu, D. Wang J. Wang, M. Dai and K. Zhou, “Study on the Spray Processes and Characteristics of Cr3C2/NiCr Coating”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, pp. 683-685.
[44]S. Zimmermann, H. Keller and G. Schwier, “New Carbide Based Materials for HVOF Spraying”, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 2003, pp. 227-232.
[45]R. Goswami, H. Herman, S. Sampath, J. Parise, Y. Zhu and D. Welch, “Shock-Induced Transformations in Hexagonal Boron Nitride by High- Velocity Thermal Spray”, Journal of the American Ceramic Socirty, vol. 85, 2002, p2437-2443.
[46]Z. Pan, H. Sun, Y. Zhang and C. Chen, “Harder than Diamond: Superior Indentation Strength of Wurtzite BN and Lonsdaleite”, Physical Review Letters, vol. 102, 2009, pp. 055503.
[47]http://www.sciscape.org/news_detail.php?news_id=2428
[48]P. B. Mirkarimi, K. F. McCarty and D. L. Medlin, “Review Of Advances in Cubic Boron Nitride Film Synthesis”, Materials Science and Engineering, vol. R21, 1997, pp. 47-100.
[49]http://en.wikipedia.org/wiki/Boron_nitride
[50]http://www.advceramics.com
[51]M. R. Dorfman, “Thermal Spray Materials”, Advanced Materials & Processes, vol. 160, 2002, pp. 49-51.
[52]R. H. Unger, “Comparison of Thermal Spray Bond Coats”, Proceedings of the National Thermal Spray Conference, Cincinnati, Ohio, USA, 1987, pp. 365-370.
[53]H. S. Rondeau, “The Behavior of Nickel Aluminum in the Electric Arc Process”, Eighth International Thermal Spraying Conference, Miami Beach, Florida, USA, 1976, pp. 281-288.
[54]S. Zimmermann and H. Kreye, “HVOF and Plasma Sprayed Molybdenum Coatings – Microstructure and Properties”, Proceedings of the 8th National Thermal Spray Conference, Texas, USA, 1995, pp. 297-301.
[55]H. S. Ingham Jr., “Bonding of Flame-Sprayed Ni-Al”, Journal of Vacuum Society and Technology, vol. 12, 1975, pp. 773-776.
[56]S. Chiovelli, M. Anderson and R. Llewellyn, “The Use of Tungsten Carbide Materials for Oils and Wear Applications”, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 2003, pp. 509-518.
[57]F. N. Longo, “Plasma and Flame Sprayed Coatings Satisfy Hard Chromium Plate Applications”, Eighth International Thermal Spraying Conference, Miami Beach, Florida, USA, 1976, pp. 342-353.
[58]M. Ruckert, J. Wigren and K. W. Couch, “How to Define the True Structure of 88/12 WC/Co and How to Find the Correct Preparation Method”, Plasma Spray Coatings Symposium at Struers, Copenhagen, Denmark, 1988, pp. 1-10.
[59]S. Sampath, X. Jiang, “Splat formation and microstructure development during plasma spraying: deposition temperature effects”, Materials Science and Engineering A, vol. 304-306, 2001, pp. 144-150.
[60]S. Oki, “Splat Morphology in Spray Pattern of Plasma Spraying”, Proceedings of the International Thermal Spray Conference, Singapore, 2001, pp. 835-840.
[61]M. Fukummoto, E. Nishioka and T. Nishiyama, “Proposal of New Criterion for Splashing of Thermal Sprayed Particle onto Flat Substrate Surface”, Proceedings of the International Thermal Spray Conference, Singapore, 2001, pp. 841-848.
[62]P. Fauchais, A. Vardelle, M. Vardelle, A. Denoirjean, B. Pateyron and M. E. Ganaoui, “Formation and Layering of Alumina Splats:Thermal History of Coating Formation, Resulting Residual Stresses and Coating Microstructure”, Proceedings of the International Thermal Spray Conference, Singapore, 2001, pp. 865-873.
[63]A. Abedini, A. Pourmousa, S. Chandra and J. Mostaghimi, “Splat Formation in Wire Arc Spraying”, International Thermal Spray Conference Proceedings, Osaka, Japan, 2004, pp. 645-650.
[64]H. S. Ahn, I. W. Lyo, D. S. Lim, “Influence of molybdenum composition in chromium oxide-based coatings on their tribological behavior”, Surface and Coatings Technology, vol. 133-134, 2000, pp. 351-361.
[65]V. Fervel, B. Normand and C. Coddet, “Tribological behavior of plasma sprayed Al2O3-based cermet coatings”, Wear, vol. 230, 1999, pp. 70-77.
[66]A. A. Abdel-Samad, A. M. M. El-Bahloul, E. Lugscheider and S. A. Rassoul, “A comparative study on thermally sprayed alumina based ceramic coatings”, Journal Of Materials Science, vol. 35, 2000, pp. 3127-3130.
[67]J. Voyer and B. R. Marple, “Tribological performance of thermally sprayed cermet coatings containing solid lubricants”, Surface and Coatings Technology, vol. 127, 2000, pp. 155-166.
[68]B. R. Marple and J. Voyer, “Improved wear performance by the incorporation of solid lubricants during thermal spraying”, Journal of Thermal Spray Technology, vol. 10, 2001, pp. 626-636.
[69]M. Schutz, G. Barbezat and E. S. Pluck, “Measurement Technology for Inflight Particle Diagnosis in Plasma Spraying”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, pp. 761-766.
[70]J. Vattulainen, T. Lehtinen, R. Hernberg, J. Knuuttila and T. Mantyla, “In-Flight Particle Concentration and Velocity Measurements in Thermal Spraying Using a Non-Intensified CCD Camera”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, pp. 767-772.
[71]L. Leblanc and C. Moreau, “In-Flight Particle Characteristics of Plasma-Sprayed Dense Yttria Stabilized Zirconia”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, pp. 773-778.
[72]J. Wigren and P. Nylen, “Production Experience of On-Line Diagnostic Systems in Plasma- and Flame Spraying”, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 2003, pp. 1237-1242.
[73]E. Hämäläinen, N. Kriikka and G. Barbezat, “On-line Optical Diagnostics of a Rotating Internal Diameter Plasma Spray Gun Used for Coating of Cylinder Bores in Automotive Industry”, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 2003, pp. 1249-1253.
[74]P. Vuoristo, S. Ahmaniemi, S. Nuutinen, T. Mantyla E. Hamalainen N. Arolan and J. Vattulainen, “Optimisation and Monitoring of Spray Parameters by a CCD Camera Based Imaging Thermal Spray Monitor”, Proceedings of the International Thermal Spray Conference, Singapore, 2001, pp. 727-736.
[75]A. Refke, G. Barbezat and M. Loch, “The Benefit of an On-line Diagnostic System for the Optimization of Plasma Spray Devices and Parameters”, Proceedings of the International Thermal Spray Conference, Singapore, 2001, pp. 765-770.
[76]ASTM G 65 Standard: Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus, American Society for Testing and Materials.
[77]ASTM C 633 Standard: Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, American Society for Testing and Materials.
[78]M. Li and P. D. Christodes, “Computational study of particle in-flight behavior in the HVOF thermal spray process” Chemical Engineering Science, vol. 61, 2006, pp. 6540-6552.
[79]H. S. Ni, X. H. Liu, X. C. Chang, W. L. Hou, W. Liu and J. Q. Wang, “High performance amorphous steel coating prepared by HVOF thermal spraying”, Journal of Alloys and Compounds, vol. 467, 2009, pp. 163-167.
[80]M. M. Verdian, K. Raeissi and M. Salehi, “Electrochemical impedance spectroscopy of HVOF-sprayed NiTi intermetallic coatings deposited on AISI 1045 steel”, Journal of Alloys and Compounds, vol. 507, 2010, pp. 42-46.
[81]X. Q. Liu, Y. G. Zheng, X. C. Chang, W. L. Hou, J. Q. Wang, Z. Tang and A. Burgess, “Microstructure and properties of Fe-based amorphous metallic coating produced by high velocity axial plasma spraying”, Journal of Alloys and Compounds, vol. 484, 2009, pp. 300-307.
[82]C. Tekmen, I. Ozdemir, G. Fritsche and Y. Tsunekawa, “Structural evolution of mechanically alloyed Al-12Si/TiB2/h-BN composite powder coating by atmospheric plasma spraying”, Surface and Coatings Technology, vol. 203, 2009, pp. 2046-2051.
[83]J. Y. Huang, H. Yasuda and H. Mori, “HRTEM and EELS Studies on the Amorphization of Hexagonal Boron Nitride Induced by Ball Milling”, Journal of the American Ceramic Society, vol. 83, 2000, pp. 403-409.
[84]W. Ma, W. X. Pan, and C. K. Wu, “Preliminary investigations on low-pressure laminar plasma spray processing”, Surface and Coatings Technology, vol. 191, 2005, pp. 166-174.
[85]S. Deshpande, H. Zhang and S. Sampath, “Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings–Case study for Ni–Al”, Surface and Coatings Technology, vol. 200, 2006, pp. 5395-5406.
[86]T. C. Totemeier, R. N. Wright and W. D. Swank, “FeAl and Mo–Si–B intermetallic coatings prepared by thermal spraying FeAl and Mo–Si–B intermetallic coatings prepared by thermal spraying”, Intermetallics, vol. 12, 2004, pp. 1335-1344.
[87]R. A. Mahesh, R. Jayaganthan and S. Prakash, “Microstructural characterization and hardness evaluation of HVOF sprayed Ni–5Al coatings on Ni- and Fe-based superalloys”, Journal of Materials Processing Technology, vol. 209, 2009, pp. 3501-3510.
[88]L. Zhao, M. Maurer and E. Lugscheider, “Thermal spraying of a nitrogen alloyed austenitic steel”, Thin Solid Films, vol. 424, 2003, pp. 213-218.
[89]C. J. Li and J. L. Li, “Transient contact pressure during flattening of thermal spray droplet and its effect on splat formation”, Journal of Thermal Spray Technology, vol. 13, 2004, pp. 229-238.
[90]D. M. Chun and S. H. Ahn, “Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system”, Acta Materialia, vol. 59, 2011, pp. 2693-2703.
[91]S. S. Batsanov, “Features of phase transformations in boron nitride”, Diamond and Related Materials, vol. 20, 2011, pp. 660-664.
[92]Y. Tsunekawa, I. Ozdemir and M. Okumiya, “Plasma sprayed cast iron coatings containing solid lubricant graphite and h-BN structure”, Journal of Thermal Spray Technology, vol. 15, 2006, pp. 239-245.
[93]M. M. I. Ahmed, R. A. Abd EL-Karim, S. M. El-Raghy, F. A. El-Refaie, and A. E. El-Mehairy, “Wear resistance of plasma coatings on mild steel”, Journal of Materials Science, vol. 26, 1991, pp. 517-522.
[94]H. Du, C. Sun, W. Hua, T. Wang, J. Gong, X. Jiang, and S. W. Lee, “Structure, mechanical and sliding wear properties of WC-Co/MoS2-Ni coatings by detonation gun spray”, Materials Science & Engineering A, vol. 445, 2007, pp. 122-134.
[95]N. Alexeyev and S. ahanmir, “Mechanics of friction in self-lubricating composite materials I: Mechanics of second-phase deformation and motion”, Wear, vol. 166, 1993, pp. 41-48.
[96]O. Culha, E. Celik, N. F. Ak Azem, I. Birlik, M. Toparli and A. Turk, “Microstructural, thermal and mechanical properties of HVOF sprayed Ni–Al-based bond coatings on stainless steel substrate”, Journal of Materials Processing Technology, vol. 204, 2008, pp. 221-230.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊