跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃道易
研究生(外文):Dao-Yi Huang
論文名稱:高密度甲醇-水電漿重組器開發之研究
論文名稱(外文):The Study and Develop of High Density Methanol-Water Plasma Reforming
指導教授:林百福林百福引用關係
口試委員:呂立鑫呂有豐李景峰許良明吳鴻祥吳坤齡連信仲
口試日期:2011-11-01
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:158
中文關鍵詞:甲醇-水電漿重組器氫氣替代能源
外文關鍵詞:methanol-water plasma reformerhydrogenalternative energy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氫氣已被公認是唯一潔淨的燃料,又是節能減碳並消除溫室氣體最直接有效的利器。而當前的製氫技術運用在行動載具車輛上較可行的方案便是重組器的產氫方法。這是由於重組器能將碳鏈長度較短的甲醇或甲醇加水的混合燃料,在較低的解離溫度下即能解離出高氫濃度的富氫氣體使用在車用的引擎上做為原汽、柴油石化燃料的輔助燃料,或將富氫氣體經純化處理後成為純氫氣體來做為燃料電池車輛的使用燃料。
本研究自行研發設計的高密度甲醇水電漿重組器,可同時解決目前一般其他重組器的工作溫度過高、冷啟動時間過長、體積較大、解離耗能過大和產氫濃度過低的問題。後經實驗結果顯示,本重組在開機後僅20~25秒鐘內的冷啟動時間即可穩定產出富氫氣體,其氫氣濃度約可達34.2 %,且重組器的工作溫度均維持在42 ℃附近並具有高可靠度的重現性,又重組器的解離耗能低僅約147~191 W和體積小。另當本重組器產出的富氫氣體做為一小型汽油引擎之輔助燃料時,其實驗結果亦驗證出,除可提升原引擎性能之扭力17.53 %和增加23.59 %能源效率及節省9.05 %汽油燃料消耗外,又在廢氣排放上亦可同時分別減低CO、CO2和HC濃度約9.84 %、18.07 %和3.16 %,但由於富氫氣體於汽缸內燃燒時,其缸內溫度較高而致NOX濃度增加14.7 %。此外,在能源效率提升率的評估結果亦可證實,本重組器所產出的富氫氣體熱值是高於甲醇燃料的消耗熱值。又使用本重組器產出的富氫氣體來輔助汽油燃料於引擎性能實驗的結果觀之,其能源效率提升率最高可達5.82%。因此,本重組器頗符合行動載具車輛上的使用要求。


It has been publicly recognized that hydrogen is not only a clean fuel but is also the most direct and most effective means for energy conservation and carbon reduction as well as for removing greenhouse gasses. In modern days, the more practical way of implementing hydrogen-generation technology in mobile carrier vehicles is nothing more than generating hydrogen with a reformer. It is because of the said reformer that it is able to decompose the hydrogen-enriched gas containing a higher hydrogen concentration from methanol with shorter carbon chains or the mixed methanol-water fuel under lower decomposing temperature for use as an auxiliary fuel for gasoline, diesel and petro-chemical fuel in automobile engines, or to purify the hydrogen-enriched gas into pure-hydrogen gas for use as fuel in a fuel-cell car. The main purpose of the High-density Methanol Liquid Plasma Reformer designed and developed by this institute is to solve the following problems usually occurring to other kinds of reformers, such as higher working temperature, lengthier cold start time, oversized measurement, excessive decomposition energy consumption and excessively low hydrogen-generating concentration. According to the experiment results following development, the said reformer is able to generate high-concentration hydrogen containing 34.2 % hydrogen-enriched gas in a stabilized manner within 20~25 seconds of cold start time after turning on the machine. Further, the reformer also presented highly reliable reproducibility by maintaining the working temperature at approx. 42 0C while exhibiting lower decomposition energy consumption down to 147~191 W and smaller measurement as well. When using the hydrogen-enriched gas generated by the said reformer as the auxiliary fuel for smaller-sized gasoline engines, the experiment results also verified that it not only enhances the torque of original engine performance by 17.53 %, increases energy efficiency by 23.59 % and saves gasoline fuel consumption by 9.05 %, but also contributes to waste gas exhaust by reducing CO, CO2 and HC by 9.84 %, 18.07 % and 3.16 % respectively. In view hydrogen-enriched gas of combustion in the cylinder, the cylinder temperatures higher, it also leads to the increased concentration of NOX by 14.7 %. In addition, Also use this reformer output of hydrogen-rich gas to auxiliary gasoline fuel in the engine performance of the view on the results of the experiment, its energy efficiency rate of up to 5.82%. For this reason, the Reformer should meet the operational requirements for the mobile carrier vehicle.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 6
1.3 研究範圍與限制 8
1.4 本研究的貢獻 10
第二章 文獻回顧 11
2.1 氫氣燃料 11
2.2 醇類燃料 21
2.3 超音波震盪霧化器 25
2.4 電漿產生器 28
2.5 重組器 31
第三章 實驗設備與方法 38
3.1 實驗設備 38
3.1.1 電漿性能實驗設備 39
3.1.2 燃料霧化實驗設備 42
3.1.3 高密度甲醇-水電漿重組器實驗設備 51
3.1.4 燃料粒徑實驗設備 62
3.1.5 引擎性能實驗設備 67
3.2 實驗方法 76
3.2.1 電漿性能實驗方法 76
3.2.2 燃料霧化實驗方法 76
3.2.3 高密度甲醇-水電漿重組器實驗方法 81
3.2.4 燃料粒徑實驗方法 82
3.2.5 引擎性能實驗方法 85
第四章 實驗結果與分析 88
4. 1 電漿實驗 88
4.1.1 電漿性能 88
4.1.2 小結 98
4. 2 燃料霧化 99
4.2.1 加工前、後電漿反應區受潮積水比較 99
4.2.2 空氣供應量對重組器之加工前與後的產氫濃度比較 103
4.2.3 小結 114
4.3 高密度甲醇-水電漿重組器實驗 115
4.3.1 高密度甲醇-水電漿重組器性能 115
4.3.2 冷啟動性能 118
4.3.3 小結 119
4.4 燃料粒徑 120
4.4.1 粒徑分布 120
4.4.2 小結 125
4.5 引擎性能實驗 126
4.5.1 扭力之比較 127
4.5.2 燃油消耗值之比較 129
4.5.3 能源效率之比較 131
4.5.4 CO濃度之比較 133
4.5.5 HC濃度之比較 135
4.5.6 CO2濃度之比較 137
4.5.7 NOx濃度之比較 139
4.5.8 總能源效率 142
4.5.9 小結 146
第五章 結論、建議與未來研究方向 147
5.1 結論 147
5.2 建議 148
5.3 未來研究方向 149
參考文獻 150
著作發表 156
作者簡介 158


[1] 楊鏡堂,李志杰(2005)〝能源、幸福、未來─淺力無窮的再生能源發展〞。經濟部能源局能源報導期刊pp.14.
[2] BP英國石油公司(2007.6)〝世界能源統計〞BP能源報導期刊,第56期(http://www.bp.com).
[3] 林弘民,燃料電池用自發熱甲醇重組器性能量測與數值模擬,碩士論文,國立中興大學機械工程研究所,台中,2004年7月。
[4] Ahmed S., Kumar R. and Krumpelt M., " Methanol Partial OxidationReformer ", United States Patent , No. 5,942,346, 1999.
[5] Kumar R., Ahmed S. and Krumpelt M.," Rapid-start reformer for methanolin fuel-cell vehicles ", Electric & Hybrid Vehicle Technology , 1996 ,Vol. 96, pp. 123-127.
[6] Denis Kouroussis and Shahram Karimi," Alternative Fuels in Transportation ", Bulletin of Science Technology Society , 2006,vol. 26;pp. 346.
[7] C.M. White, R.R. Steeper and A.E. Lutz “The hydrogen-fueled internal combustion engine: a technical review” International Journal of Hydrogen Energy 31 (2006) 1292 – 1305.
[8] G.J. Rohwein ," Automotive Ignition Transfer Efficiency ", Society Automotive Engineers Inc 02EFL-204, 2002.
[9] S.Verhelst and R. Sierens," Hydrogen engine-speci''c properties. ", International Journal of Hydrogen Energy , 2001 , vol.26,pp.987-990.
[10] S.Verhelst and R.Sierens," Aspects concerning the optimisation of a hydrogen fueled engine. ", International Journal of Hydrogen Energy , 2001 , vol.26,pp.981-985.
[11] Energy Efficiency and Renewable Energy , U.S. Department of Energy.

[12] Xi Zhen LIU ," Hydregen Production from Methanol Using Corona Discharges ", Chinese Chemical Letters , Vol.14, No.6, 2003 , p.631~633.
[13] L.M. Das, Rohit Gulati and P.K. Gupta," A comparative evaluation of the performance characteristics of a spark ignition engine using hydrogen and compressed natural gas as alternative fuels. ", International Journal of Hydrogen Energy , 2000 , vol.25, pp.783-793.
[14] Rong-Fang Horng ," Transient behaviour of a small methanol reformer for fuel cell during hydrogen production after cold start ", Energy Conversion and Management, NO.46, 2005 , PP.1193–1207.
[15] Emonts B., Hansen J.B., Jorgensen S.L., Hohlein B. and Peters R.," Compact methanol reformer test for fuel-cell powered light-duty vehicles ", Journal of Power Sources, 1998 , Vol. 71, pp. 288-293.
[16] Han J., Kim I.S. and Choi K.S.," Purifier-integrated methanol reformer for fuel cell vehicles ", Journal of Power Source , 2000 ,Vol. 86 , pp. 223-227.
[17] S.Orhan Akansu, Zafer Dulger and Na1z Kahraman, T. Nejat Veziroglu , " Internal combustion engines fueled by natural gas—hydrogen mixtures. ", International Journal of Hydrogen Energy , 2004 , vol.29, pp. 1527 – 1539.
[18] Gyeung Ho Choia, Yon Jong Chungb and Sung Bin Hanc ," Performance and emissions characteristics of a hydrogen enriched LPG internal combustion engine at 1400 rpm. ", International Journal of Hydrogen Energy , 2005 , vol 30 ,pp.77 – 82.
[19] Maher A.R. Sadiq Al-Baghdadi and Haroun A.K. Shahad Al-Janabi ," A prediction study of a spark ignition supercharged hydrogen engine. ", Energy Conversion and Management, 2003 , vol.44 ,pp. 3143–3150.

[20] Magdalena Momirlan and T.N.Veziroglu," The properties of hydrogen as fuel tomorrowin sustainable energy system for a cleaner planet ", International Journal of Hydrogen Energy , 2005 , vol.30 ,795 – 802.
[21] Roger Sierens, Sebastian Verhelst and Stefaan Verstraeten ," An overview of hydrogen fuelled internal combustion engines ", Proceedings International Hydrogen Energy Congress and Exhibition IHEC(2005).
[22] Y.Hacohen and E.sher ," Fuel consumptiom and emission of SI engine fueled with H2-enriched gasoline. ", IEEE paper , 1989 ,No.899403,pp.2485-2490.
[23] Jong T. Lee and Y. Y. Kim ," The Development Of Dual Injection Hydrogenfueled Engine With High Power And High Efficiency ", Fall Technical Conference of the ASME-ICED, 2002.
[24] Habil and Raymond Freymann ," The State of The Art And Future Perspectives Of The Application Of Hydrogen I.C. Engines ", BMW Group Research and Technology, D-80788 Munich, Germany 2004.
[25] Krishna Sapru and Subramanian Ramachandran ," Ovonic Metal Hydride Based Hydrogen Ice Scooter ", DOE Hydrogen Program Review, 2001 , NREL/CP-570-30535.
[26] James W. Heffel, " NOx emission reduction in a hydrogen fueled internal combustion engine at 3000 rpm using exhaust gas recirculation. ", International Journal of Hydrogen Energy , 2003 , vol.28 , pp.1285 – 1292.
[27] Biomass for Power Generation and CHP,IEA Energy Technology Essentials, January 2007.
[28] Hajime Kabashima, Hisahiro Einaga and Shigeru Futamura, "Hydrogen Generation from Water, Methane, and Methanol with Nonthermal Plasma National Institute of Advanced, " Science and Technology, 2001.
[29] Adamson K.A. and Pearson P. ," Hydrogen and methanol: a comparison of safety economics efficiencies and emissions ", Journal of Power Source, Vol. 86, 2000 , pp. 548-555.
[30] Brown L. F. ," A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles ", International Journal of Hydrogen Energy, Vol. 26, 2001 , pp. 381-397.
[31] Amphlett J.C., Mann R.F. and Peppley B.A. ," Performance and operating characteristics of methanol steam-reforming ", Proceedings of 11th World Hydrogen Energy Conference, Germany, 1996 , pp. 1737-1743.
[32] Ahmed S., Doshi R., Kumar R. and Krumpelt M. ," Gasoline to hydrogen–a S.Futamura ," The dependence of nonthermal plasma behavior of VOCs on their chemical structures. ", Journal of Electrostatics, No.42, 1997 , pp. 51-62.
[33] S.Futamura , "The dependence of nonthermal plasma behavior of VOCs on their chemical structures. " Journal of Electrostatics, No.42, 1997, pp. 51-62.
[34] Okada T., Gonjo Y., Matsumura M. and Mitsuda K ," Development of methanol reformer for PEFC ", Mitsubishi Electric Corporation.
[35] 吳國華,超音波霧化於燃料電池甲醇重組器製氫之研究,碩士論文,國立成功大學航空太空工程系,台南,2003年7月.
[36] 蔡賢德,甲醇重組器之燃料霧化粒徑對於產氫特性影響研究,碩士論文,崑山科技大學機械工程系所,2007 年6 月.
[37] Toshiaki Yamamoto ," Optimization Of nonthermal plasma for the treatment of gas streams ", Journal of Hazardous Materials B67, 1999 , pp.165-181.
[38] Bromberg L., D.R. Cohn, K. Hadidil, J.B. Heywood and A. Rabinovich," Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications. ", Diesel Engine Emission Reduction (DEER) Workshop, 2004 ,PSFC-JA-05-22.
[39] Peppley B.A., Amphlett J.C., Kearns L.M. and Ronald, F.M. ," Methanol-steam reforming on Cu/ZnO/Al2O3.part 1 the reaction work ", Applied Catalysis A General,Vol.179, 1999 , pp. 21-29.
[40] Bromberg L., Cohn D.R., Rabinovich A. and Alexeev N. ," Plasma catalytic reforming of methane ", Int. J. Hydrogen Energy, 1999 ,Vol. 24, pp. 1131-1137.
[41] Bromberg L., Cohn D.R. and Rabinovich A.," Plasma reformer-fuel cell system for decentralized power applications ", Int. J. Hydrogen Energy, Vol. 22, No. 1, pp. 83-94.
[42] Edwards N., Ellis S. R., Forst J. C., Golunski S. E., Keulen A.N.J. Van, Lindewald N.G. and Reinkingh J.G.," On-board hydrogen generation for transport applications: the HotSpot(TM) methanol processor ", Journal of Power Source, 1998 ,Vol.71, pp. 123-128.
[43] Hohlein B., Boe M., Bogild-Hansen J., Brockerhoff P., Colsman G. and Emonts B.," Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer ", Journal of Power Sources, 1996 ,Vol. 61, pp.143-147.
[44] Wiese W., Emonts B. and Peters R.," Methanol steam reforming in a fuel cell drive system ", Journal of Power Sources, 1999 , Vol. 84 , pp.187-193.
[45] Bromberg L., R. Cohn., A. Rabinovich and N. Alexeev ," Plasma catalytic reforming of methane ", International Journal of Hydrogen Energy , 1999 ,Vol.24 , pp. 1131±1137.
[46] 宋隆裕,「燃料電池用甲醇重組器之測試研究」,能源季刊,第二十四卷第一期,1994年,pp. 69-88.
[47] 鄭耀宗,林錦燦,萬瑞霙,「PEMFC 做為車輛動力系統的先期研究」,能源季刊,第二十七卷,第三期,1997年7月,pp.93-104.
[48] 施宏杰,火花放電之電漿反應對於甲烷產出氫氣之特性研究,碩士論文,崑山科技大學機械工程系,台南,2004年6月.
[49] Mutaf-Yardimci O., Saveliev A.V., Fridman A.A. and Kennedy L.A., " Employing plasma as catalyst in hydrogen production ", Int. J. Hydrogen Energy, 1998 ,Vol. 23, No.12 , pp. 1109-1111.
[50] Pietruszka B., Anklam K. and Heintze M.," Plasma-assisted partial oxidation of methane to synthesis gas in a dielectric barrier discharge ", Applied Catalysis A: General, 2004 , Vol. 261 , pp. 19-24.
[51] Bard Lindstrom. and Lars J.Pettersson," Development of a methanolfuelled reformer for fuel cell applications ", Journal of Power Sources, 2003 ,Vol. 118, pp. 71-78.
[52] Mariana M. V. M. Souza. and M. Schmal ," Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts ", Applied Catalysis A: General, Vol. 281, 2005, pp.19-24.
[53] 郭宗欽,燃料電池用之甲醇重組器自熱式重組法暫態特性研究,碩士論文,崑山科技大學機械工程學系,台南,2005年7月.
[54] 詹前歆,燃料電池用之甲醇重組器冷起動過程之產氫特性研究,碩士論文,崑山科技大學機械工程系,台南,2005年7月.
[55] Xi Zhen LIU ," Hydregen Production from Methanol Using Corona Discharges ", Chinese Chemical Letters , Vol.14, No.6, 2003, p.631~633.
[56] Hohlein B., Boe M., Bogild-Hansen J., Brockerhoff P., Colsman G. and Emonts B. ," Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer ", Journal of Power Sources, 1996 , Vol. 61, pp. 143-147.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top