跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李方利
研究生(外文):Fang-Li Lee
論文名稱:擦洗技術應用於受砷污染土壤整治之研究
論文名稱(外文):A Study on Remediation of Arsenic-Contaminated Soil by Attrition Scrubbing
指導教授:柯明賢柯明賢引用關係
指導教授(外文):Ming-Sheng Ko
口試委員:高志明鄭大偉張祖恩
口試委員(外文):Ta-Wui ChengJuu-En Chang
口試日期:2012-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:擦洗受砷污染土壤分離富集XRF
外文關鍵詞:Attrition scrubbingArsenic-Contaminated soilseparationenrichmentXRF
相關次數:
  • 被引用被引用:4
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
由受重金屬污染土壤特性之調查結果,顯示土壤中重金屬易吸附或鍵結於黏土或砏土等微細顆粒上,利用擦洗(Attrition scrubbing)程序進行受重金屬污染土壤之整治上,應可藉由土壤顆粒間的表面磨擦及相互撞擊作用將附著於粗顆粒表面的含重金屬之細微顆粒加以脫除分離,而有助於提升後續整治處理程序重金屬之分離與富集效率。本研究係以擦洗結合化學萃取等程序探討對受砷污染土壤之整治效率,並進一步探討擦洗時間、漿體濃度、pH值及酸萃取劑等物理或化學操作條件對整治效率之影響,並藉由連續式萃取試驗以暸解受砷污染土壤於擦洗程序前後其粗細顆粒間各種砷結合型態之變化。
由受砷污染土壤基本特性分析,顯示本研究受砷污染土壤樣本屬於粗質地的「壤質砂土」,其砷含量平均濃度超過土壤管制標準值7倍之多,另由SEM顯微結構觀察可以發現其粗顆粒土壤表面附著大量的極細顆粒污染物。此外,本研究選擇以XRF進行受砷污染土壤中砷濃度分析之探討,以取代傳統實驗室酸消化(AA)分析,由分析結果可以發現二者對於砷分析濃度間具有高度相關性,顯示XRF可作為本研究試驗樣本中砷濃度分析之儀器。
由研究結果可以發現,單純以擦洗時間即將體濃度等物理操作參數進行擦洗時,受砷污染土壤在漿體濃度70 %、擦洗時間20 min進行擦洗程序時,有較佳的砷濃縮富集效率,粗粒度砷濃度去除率達32 %。而在擦洗程序結合化學性酸萃取下,在漿體濃度70 %、擦洗時間20 min及添加10 % 磷酸時為最適操作參數,估計約有70 %的土壤砷平均濃度符合管制標準而得以進行回收利用。另外,由擦洗前後各粒度砷結合型態分析結果顯示,擦洗程序對於各粒度土壤中砷的結合型態變化影響並不明顯,但是卻對粗細顆粒土壤中砷的含量有顯著影響。綜合以上研究結果可知,利用擦洗程序作為受砷污染土壤之前處理具有可行性,可有效提升細顆粒土壤中砷之富集效果而有助於後續土壤分級處理之分離效率。

In previous studies, heavy metals have been proven to be easily absorbed or bound in the surface of particle of fine soil, like clay or silt. The attrition scrubbing technique applied to treat heavy metals contaminated soil, because of fine particles with contaminant separated from clean coarse particles during attrition scrubbing process to enhance the efficiency of separation and enrichment of heavy metals contaminant. In this study, the treatment efficiency of arsenic-contaminated soil by attrition scrubbing with chemical extraction processes and scrubbing time, slurry concentration, pH value was studied. The comparisons of particle distribution and chemical structure of arsenic before and after attrition scrubbing treatment were further discussed by the sequential extraction procedure.
From the analysis of soil characteristics, the results show that the average concentration of arsenic-contaminated soil is seven times more than control standard of soil pollution in Taiwan. The particle size of soil in this study belongs to the coarse texture of "loamy sand". A large quantity of finer particles with pollutants is attached to the coarse surface of soil particles by SEM observation of surface micro-structure. In addition, the analysis results of XRF and traditional acid digestion analysis for arsenic concentration indicate that it has a high degree of correlation between the analysis of XRF and traditional acid digestion. It implies that XRF instrument could be used for analyzing arsenic concentration of soil.
The results show that the optimum physical operation parameters are controlled on slurry concentration 70 % and attrition scrubbing time 20 min, the 32 % of arsenic in coarse soil particles could be removed. The attrition scrubbing combined with 10% phosphoric acid solution to enable 70 % of arsenic-contaminated soil for arsenic concentration to be under control standard of soil pollution. It is obvious that the finer soil particle is, and the higher arsenic concentration is. Based on the above results, it is feasible that the attrition scrubbing is used for pretreating arsenic-contaminated soil to concentrate arsenic contents on finer particles.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 前言 1
1.1 研究動機與目的 1
1.2 研究內容 3
第二章 文獻回顧 4
2.1 國內土壤重金屬污染現況及相關法令規範 4
2.2 土壤來源及其特性 5
2.2.1 土壤來源 6
2.2.2 土壤之物理性質 7
2.2.3 土壤之化學特性 11
2.2.4 土壤污染之定義 12
2.3 重金屬在土壤中之宿命 12
2.3.1 重金屬在土壤之傳輸機制 12
2.3.2 重金屬在土壤中傳輸之影響因子 14
2.4 砷的來源、化學特性、型態及其危害 17
2.4.1 砷的來源 17
2.4.2 砷的化學特性 17
2.4.3 砷的型態 18
2.4.4 砷對於人體及環境的危害。 22
2.5 土壤整治技術 23
2.5.1 受重金屬污染土壤整治技術 23
2.5.2 土壤清洗技術 31
2.5.3 擦洗技術 32
第三章 研究方法 36
3.1 研究架構與實驗流程 36
3.2 實驗材料與設備 38
3.2.1 實驗材料 38
3.2.2 實驗藥品 38
3.2.3 實驗儀器設備 38
3.3 實驗與分析方法 40
3.3.1 土壤樣本前處理及保存 40
3.3.2 土壤樣本特性分析 40
3.3.3 受砷污染土壤之擦洗程序 45
第四章 結果與討論 46
4.1 受砷污染土壤之基本特性 46
4.1.1 粒徑分析 46
4.1.2 化學特性分析 47
4.2 擦洗程序對土壤中砷含量粒度分佈之影響 52
4.2.1 擦洗時間之影響 52
4.2.2 漿體濃度之影響 56
4.2.3 pH值之影響 59
4.2.4 擦洗程序結合酸萃取之影響 61
4.3 以砷富集比探討土壤擦洗前後之效益 67
4.3.1 物理性擦洗程序對砷富集比效益之影響 68
4.3.2 擦洗程序結合化學萃取方式對砷富集比效益之影響 69
4.4 擦洗程序對土壤表面型態及其砷結合型態之影響 71
4.4.1 擦洗程序對土壤顆粒表面型態之影響 71
4.4.2 擦洗程序對土壤中砷結合型態之影響 74
第五章 結論與建議 78
5.1 結論 78
5.2 建議 79
參考文獻 81

[1] 胡弘道、國立編譯館主編,森林土壤學-修訂版,台灣:茂昌圖書公司,1993,第190-258頁。
[2] 王一雄、陳尊賢、李達源,土壤資源利用與保育,台灣:國立空中大學印,2001,第190-258頁。
[3] Alloway, B. J., Heavy metal in soil, New York: John Wiley & Sons, 1990, pp.110-124.
[4] 王一雄,土壤環境污染與農藥,台灣:明文書局,1997,第229-260頁。
[5] McBride, M. B., and Blasiak, J. J., "Zinc and copper solubility as a function of pH in an acid soil," Soil Sci. Soc. Am. J, vol. 43, 1979, pp. 866-870.
[6] Puls, R. W. and Bohn, H. L., "Sorption of cadmium, nickel, and zinc by kaolinite and montmorillonite suspensions," Soil Sci. Soc. Am. J,vol. 52, 1988,pp. 1289-1292.
[7] Elrashidi, M. A., and O''Connor, G. A., "Influence of solution composition on sorption of zinc by soils," Soil Sci. Am. J, vol. 46, 1982, pp. 1153-1158.
[8] Egozy, Y, "Adsorption of cadmium and cobalt on montmorillonite as a function of solution composition," Clays Clay Min, vol. 28, 1980, pp. 311-318.
[9] 劉鎮宗,「砷與生態環境的關係」,科學月刊,第26卷,第一期,1995,第134-140頁。
[10] 黃互慶,氧化鐵覆膜濾砂吸附處理水中As(V)、HA 之研究,碩士論文,輔英科技大學環境工程與科學系碩士班,高雄,2005。
[11] 黃弘斌,臺灣數種農耕土壤之總量砷與固相砷型態及對砷之吸附,碩士論文,國立中興大學土壤環境科學研究所,台中,1997。
[12] 行政院環境保護署,土壤及地下水重金屬與無機陰離子污染物污染場址之初步篩試調查、查證及驗證等之作業參考手冊,台灣:行政院環境保護署編印, 2011,第17-20頁。
[13] Smedley, P. L., and Kinniburgh, D. G., "A review of the source, behaviour and distribution of arsenic in natural water," Applied Geochemistry, vol. 17, 2002, pp. 517-568.
[14] Tessier, A., Campbell, P. G. C., Bisson, M., "Sequential extraction procedure for the speciation of particulate trace metals," Analytical Chemistry, vol. 51, 1979.
[15] Ure, A.M., Method of analysis for heavy metals in soils. In: Alloway, B.J. (Ed.)Heavy Metals in Soils, second ed, London:Blackie and Son Ltd., 1995, pp. 55–68.
[16] 許振宏、駱尚廉,「兩種污染土壤中重金屬之化學型態」,台東師院學報,第十一期,2000,第247-263頁。
[17] Soon, Y. K., and Bates, T. E., "Chemical pools of cadmium, nickel, and zinc in polluted soils and some preliminary indications of their availability to plants," J. Soil Sci., vol. 33, 1982, pp. 477-488.
[18] 江姿幸,滲透性反應牆對於砷污染土壤進行電動力法複育影響之研究,碩士論文,國立中山大學環境工程研究所,高雄,2005。
[19] Wen-Ming Hsu , Hsing-Cheng Hsi , You-Tuan Huang , Chien-Sen Liao , Zeng-Yei Hseu, "Partitioning of arsenic in soil–crop systems irrigated using groundwater: A case study of rice paddy soils in southwestern Taiwan," Chemosphere, vol. 86, 2012, pp. 606-613.
[20] Shuman, L. M., "Fractionation method for soil microelements," Soil Science, vol. 140, 1985, pp 11-22.
[21] Xian, X., "Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants," Plant and Soil, vol. 113, 1989, pp. 257-264.
[22] Ma, L. Q., Tan, F., Harris, W. G., "Concentrations and distributions of eleven metals in Florida soils, "Journal of Environmental Quality, vol. 26, 1997, pp. 769-775.
[23] 經濟部工業局,重金屬土壤及地下水污染預防與整治技術手冊,台灣:經濟部工業局編印,2006,第13-141頁。
[24] Kelly, E. G., Spottiswood, D. J., "Introduction to mineral processing," A Wiley Interscience Publication, 1982, pp. 171.
[25] Acosta, J. A., Cano, A. F., Arocena, J. M., Debela, F., Martinez-Martinez, S., "Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain)," Geoderma, vol. 149, 2009, pp. 101-109.
[26] Petavy, F., Rubana, V., Conil, P., "Treatment of stormwater sediments: Efficiency of an attrition scrubber - laboratory and pilot-scale studies," Chemical Engineering Journal, vol. 145, 2009, pp. 475-482.
[27] Williford, C. W., Bricka, R. M., "Physical separation of metal-contaminated soils," Environmental Restoration of Metals-Contaminated Soils, vol. 1, 2000, pp.121-165..
[28] Kelly, E. G., Spottiswood, D. J., "Introduction to mineral processing," A Wiley Interscience Publication, 1982, pp. 171.
[29] Vanthuyne, M., Maes, A., "The removal of heavy metals from contaminated soil by a combination of sulfidisation and flotation," Science of the Total Environment, vol. 290, 2007, pp. 69-80.
[30] Cauwenberg, P., Verdonckt, F., Maes, A., "Flotation as a remediation technique for heavily polluted dredged material: characterisation of floated fractions," The Science of the Total Environment, vol. 209, 1998, pp. 121-131.
[31] Tampouris, S., Papassiopi, N., Paspaliaris, I., "Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques," Journal of Hazardous Materials, vol. 84, 2001, pp. 297-319.
[32] Isoyama, M., Wada, S. I., "Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophonic soil," Journal of Hazardous Materials, vol. 143, 2007, pp. 636-642.
[33] Ko, I. W., Lee, C. H., Lee, K. P., Lee, S. W., Kim, K. W., "Remediation of soil contaminated with arsenic, zinc, and nickel by pilot-scale soil washing," Environmental Progress, vol. 25, 2006, pp. 39-48.
[34] Tejowulan, R. S., Hendershot, W. H., "Removal of trace metals from contaminated soils using EDTA incorporating resin trapping techniques," Environment Pollution, vol. 103, 1998, 135–142.
[35] Wasay, S. A., Parker, W. J., VanGeel, P. J., "Removal of lead from a calcareous soil by chloride complexation," Soil and Sediment Contamination, vol. 11, 2002, pp. 841-859.
[36] Peters, R.W., "Chelant extraction of heavy metals from contaminated soils," Journal of Hazardous Material, vol. 66, 1999, pp.151-210.
[37] Lim, T. T., Chui, P. C., Goh, K. H., "Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil," Chemosphere, vol. 58, 2005, pp. 1031-1040.
[38] Ehsan, S., Prasher, S. O., Marshall, W. D., "A washing procedure to mobilize mixed contaminants from soil : II, Heavy metals," Journal of Environmental Quality, vol. 35, 2006, pp. 2084-2091.
[39] Mulligan, C. N., Yong, R. N., Gibbs, B. F., "On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil," Environmental Progress, vol. 18, 1999, pp. 50-54.
[40] Lahoda, E. J., Grant, D. C., "Method and apparatus for cleaning contaminated particulate material," U.S. Patent 5, vol. 268, 1993, pp. 128.
[41] 陳尊賢,「受重金屬污染農地土壤之整治技術與相關問題分析」,台灣土壤及地下水環境保護協會,第9卷,第七期,2003,第2-9頁。
[42] Stegmann, R., Brunner, G., Calmano, W., Matz, G., Treatment of contaminated soil, Fundamentals, Analysis, Applications, New York: Springer, 2001.
[43] Marino, M. A., Brica, R. M., Neale, C. N., "Heavy metal soil remediation: the effects of attrition scrubbing on a wet gravity concentration process," Environmental Progress, vol. 16, 1997, pp. 208-214.
[44] Bayley, R. W., Biggs, C. A., "Characterisation of an attrition scrubber for the removal of high molecular weight contaminants in sand," Chemical Engineering Journal, vol. 111, 2005, pp. 71-79.
[45] 黃亮順,擦洗技術應用於廢污中重金屬分離之研究,碩士論文,國立成功大學環境工程學系,台南,2010。
[46] Feng, D., Lorenzen, L., Aldrich, C., Mare, P.W., "Ex situ diesel contaminated soil washing with mechanical methods," Mineral Engineering, vol. 14, 2001, pp.1093-1100.
[47] Strazišar, J., Sešelj, A., "Attrition as a process of comminution and separation," Powder Technology, vol. 105, 1999, pp. 205-209.
[48] Maria Hojdova′, Toma′sˇ Navra′til, Jan Rohovec, "Distribution and Speciation of Mercury in Mine Waste Dumps," Bull Environ Contam Toxicol, vol. 80, 2008, pp. 237-241.
[49] Chiou, C. T., L. J. Peters, and V. H. Freed, "Soil-water equilibria for nonionic organic compounds," Science, vol. 213, 1981, pp. 683-684.
[50] William J. Oats, Orhan Ozdemir, Anh V. Nguyen, "Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation," Minerals Engineering, vol. 23, 2010, pp. 413-419.
[51] Thorvaldsen, G. S., Wakefield, A. W., "The sand scrubber: An effective environmental application of jet pumps," Hydrotransport, vol. 14, 1999, pp. 1-14.
[52] Gupta, C. K., Mukherjee, T. K., "Hydrometallurgy in Extraction Process, 1, Boca Raton, FL: CRC Press, 1990.
[53] Alam, M.G.M., and S. Tokunaga, "Chemical extraction of arsenic from contaminated soil," J. Environ. Sci. Health, Part A, Environ. Sci. Eng, vol. 41, 2006, pp. 631-643.
[54] Tokunaga, S. and T. Hakuta, "Acid washing and stabilization of an artificial arsenic-contaminated soil," Chemosphere, vol. 46, 2002, pp. 31-38.
[55] 蘇紹瑋、陳尊賢,「土壤清洗法整治重金屬污染土壤國內外最新研究與整治案例之回顧」,台灣土壤及地下水環境保護協會簡訊, 第二十七期,2008,第4-12頁。
[56] 行政院環境保護署環境檢驗所,土壤水分含量測定方法-重量法(NIEA S280.61C),台灣:行政院環境保護署編,2002。
[57] 行政院環境保護署環境檢驗所,土壤酸鹼值測定方法-電極法(NIEA S410.62C),台灣:行政院環境保護署編,2008。
[58] Walter W. Wenzel, Natalie Kirchbaumer, Thomas Prohaska, Gerhard Stingeder , Enzo Lombi, Domy C. Adriano, "Arsenic fractionation in soils using an improved sequential extraction procedure," Analytica Chimica Acta, vol. 436, 2001, pp. 309-323.
[59] 行政院環境保護署環境檢驗所,土壤中砷檢測方法-砷化氫原子吸收光譜法(NIEA S310.63C),台灣:行政院環境保護署編,2009。
[60] 行政院環境保護署環境檢驗所,土壤中砷檢測方法-土壤和底泥中元素濃度快速篩選方法-攜帶式X-射線螢光光譜儀分析法(NIEA S322.60C),台灣:行政院環境保護署編, 2006。
[61] USEPA, Guide for conducting treatability studies under CERLAL:Soil washing interim guidance, Washington DC: EPA 540-291-020A, 1991.
[62] Sidle, R. C., Hook, J. E., Kardos, L. T., "Accumulation of heavy metals in soils as influenced by extended wastewater irrigation," Journal of the Water Pollution Control Federation, vol. 49, 1977, pp. 311-318.
[63] 陳惠芬,Na2O‧Al2O3‧nSiO2,CaO‧Al2O3‧nSiO2,xCaO‧(1-x)Na2O‧Al2O3‧nSiO2及xNa2O‧(1-x)K2O‧Al2O3‧nSiO2系統中合成沸石之研究,博士論文,國立臺灣大學地質科學研究所,台北,2003。
[64] 鄭仁雄,「農地土壤高濃度砷污染來源案例分析」,桃園縣大學院校產業環保技術服務團隊環保簡訊,12期,2011,第7頁。
[65] Jaradat, Q. M., Massadeh, A. M., Zaitoun, M. A., Maitah, B. M., "Fractionation and sequential extraction of heavy metals in the soil of scrapyard of discarded vehicles," Environmental Monitoring and Assessment, vol. 112, 2006, pp. 197-210.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top