跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 02:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏億方
研究生(外文):Yi-Feng Yen
論文名稱:以甘胺酸燃燒法製備中溫型固態氧化物燃料電池之陰極材料La2NiO4+δ-LaNiO3之研究
論文名稱(外文):Preparation of La2NiO4+δ-LaNiO3 composite cathodes by glycine nitrate process for intermediate temperature solid state fuel cells
指導教授:邱德威
口試委員:雷健明吳玉娟
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:固態氧化物燃料電池複合陰極La2NiO4+δ燃燒合成法
外文關鍵詞:SOFCcomposite cathodesLa2NiO4+δglycine nitrate process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
La2NiO4+δ與LaNiO3及La3Ni2O7-δ化合物皆屬於Ruddlesden-Popper(RP)相之一種Lan+1NinO2n+1 (n=1,2,3…),La2NiO4+δ具有離子及電子混合導電性化合物,是中溫固態氧化物燃料電池(IT-SOFC)陰極材料的新的研究方向,而鈣鈦礦結構的LaNiO3則有良好的電子傳導性。本研究以燃燒合成法製備LaNiO3、La2NiO4+δ化合物,利用高溫煆燒1200°C 6小時後使LaNiO3形成La3Ni2O7-δ, La3Ni2O7-δ之製備一般須經由高溫長時效性的處理,而我們利用燃燒法具有降低煆燒溫度的特性及LaNiO3高溫敏感性,使LaNiO3可在1200°C 6小時後形成La3Ni2O7-δ。甘胺酸燃燒法分別製備出La2NiO4+δ與LaNiO3之多孔電極,在以莫耳混合比例經由球磨混合煆燒後形成具有La3Ni2O7-δ及La2NiO4+δ相之複合陰極,探討隨著LaNiO3之添加在溫度1200°C 6 h所造成的La3Ni2O7-δ相會對於陰極顯微結構及電化學性能的變化及影響,結果發現於La2NiO4+δ中添加LaNiO3在燒結溫度1200°C下形成的La3Ni2O7-δ可提升其導電性質,隨著La3Ni2O7-δ含量的增加在600~800°C之間陰極導電率皆有明顯上升。此外,添加50 mol%LaNiO3複合陰極材料在1200°C燒附溫度於750°C量測有最低的極化阻抗,說明La3Ni2O7-δ不僅可改善陰極電子傳導性也可提升其電化學性能。La2NiO4+δ陰極塊材在1200°C 6小時透過TEM分析發現為正方晶系Tetragonal,與煆燒粉末之結構比較無任何變化。利用Rietveld精算可發現La2NiO4+δ 煆燒1000°C晶格體積有微量的縮小,但在晶格內NiO6八面體晶格有變長之現象。

La2NiO4+δ and LaNiO3 compounds are belong to Ruddlesden-Popper series Lan+1NinO3n+1(n=1,2,3…). La2NiO4+δ have ionic conductivity and and LaNiO3 is a highly conductive oxide with a perovskite type structure. These properties can applying for on materials as cathodes for IT-SOFCs.
La2NiO4+δ and LaNiO3 are porous powders that apply for cathodes of powders were prepared by glycine nitrate process(GNP). The study purpose is La3Ni2O7-δ and La2NiO4+δ compound for the affect of micro-structure and electrochemical performance of composite cathode at calcined 1200°C.
The effect of composition on the electrical performance of the composite electrodes was studied. The addition of LaNiO3 into La2NiO4+δ increased the electrical conductivities because of the more La3Ni2O7-δ phase in composite cathode sample is depend on the content of LaNiO3. when composite electrode containing 50 mol% LaNiO3 calcined at 1200°C exhibited the lowest polarization resistance at 750°C in air. The addition of LaNiO3 to La2NiO4+δ cathode reduced the polarization resistance and made the electrical conductivity increasing with temperature.


摘要 I
Abstract II
致謝 IV
目錄 IV
圖目錄 VI
表目錄...............................................................................................................................IX
第一章 緒論 1
1.1 前言 1
1.2研究動機與目的 3
第二章 文獻回顧與理論背景 4
2.1固態氧化物燃料電池 4
2.1.1 固態氧化物燃料電池之工作原理 4
2.1.2 固態氧化物燃料電池之結構種類 5
2.1.3 固態氧化物燃料電池各組件材料及特性 6
2.2 固態氧化物燃料電池反應機構 7
2.2.1 三相界面 7
2.2.2固態氧化物燃料電池之極化行為 8
2.3 K2NiF4型氧化物介紹 10
2.3.1 K2NiF4型氧化物之導電性質 11
2.3.2 K2NiF4型氧化物極化阻抗 13
2.4 La2NiO4+δ氧含量內耗現象 15
2.5陰極材料粉末合成 16
2.5.1 燃燒合成法 16
2.5.2 其它合成法 17
第三章 研究方法及流程 19
3.1藥品規格與實驗步驟 19
3.2 陰極材料試片製作及流程 21
3.2.1電解質試片製備 24
3.2.2陰極膏及半電池製備 24
3.3 檢測用儀器規格與操作 26
3.3.1 X-ray 繞射光譜儀 26
3.3.2 場發射掃描式電子顯微鏡 27
3.3.3 相對密度量測 28
3.3.4 四線式電阻量測分析 28
3.3.5 交流阻抗頻譜分析 30
3.3.6 活化能計算 31
第四章 結果與討論 33
4.1 La2NiO4+δ及LaNiO3起始粉末分析 33
4.1.1 La2NiO4+δ原始粉末XRD分析 33
4.1.1 LaNiO3原始粉末XRD分析 35
4.1.2 La2NiO4+δ(GN=1.5, 2)起始粉末SEM 37
4.2 La2NiO4+δ-LaNiO3複合陰極材料特性 38
4.2.1 XRD分析 38
4.2.2 SEM分析 40
4.2.3 密度量測 41
4.2.5 DC電性量測 43
4.2.6 活化能計算 44
4.2.7 La2NiO4+δTEM分析 46
4.3 半電池性能分析 48
4.3.1 半電池SEM分析 48
4.3.2 AC阻抗分析 49
4.3.3 全電池電性量測 55
第五章 結論 66
參考文獻 67


[1]R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz 原著,王曉紅、黃宏編譯,趙中興 審閱,"燃料電池基礎",John Wiley & Sons, Inc.全華圖書股份有限公司 印行,(2008)。
[2]Z. Zhang, M. Greenblatt, J.B. Goodenough, “Synthesis, Structure, and Properties of the Layered Perovskite La3Ni2O7-δ”, Journal of Solid State Chemistry 108 (1994) 402-409.
[3]C.D. Ling, D.N. Argyriou, G. Wu, J.J. Neumeier, “Neutron Diffraction Study of La3Ni2O7: Structural Relationships Among n=1, 2, and 3 Phases Lan+1NinO3n+1”, Journal of Solid State Chemistry 152 (1999) 517-525.
[4]N.Q. Minh, “Ceramics Fuel Cells”, Journal of the American Ceramic Society 76 (1993) 563-588.
[5]H. Kishimoto, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, H. Yokokawa, “Cation transport behavior in SOFC cathode materials of La0.8Sr0.2CoO3 and La0.8Sr0.2FeO3 with perovskite structure”, Solid State Ionics 178 (2007) 1317-1325.
[6]C. Wang, W.L. Worrell, S. Park, J.M. Vohs and R.J. Gorteb, “Fabricationand Performance of Thin-Film YSZ Solid Oxide Fuel Cells”, Journal of The Electrochemical Society 148 (2001) A864-A868.
[7]E.V. Tsipis, V.V. Kharton, N.V. Vyshatko, J.R. Frade and F.M.B. Marques, “Ion transport properties and Seebeck coefficient of Fe-doped La(Sr)Al(Mg)O3-δ”, Solid State Ionics 7 (2005) 257-267.
[8]A.S. Martinez, J. Brouwer, “Percolation modeling investigation of TPB formation In a solid oxide fuel cell electrode–electrolyte interface’’, Electrochimica Acta 53 (2008) 3597–3609
[9]J. Chen, L.S. Jiang, B. Chi, J. Pua, J. Li, F.L. Lina, “Nano-structured(La,Sr)(Co,Fe)O3+δ+YSZ composite cathodes for intermediate temperature solid oxide fuel cells”, Journal of Power Sources 183 (2008) 586-589
[10]Z. Hui, L. Qiang and S. LiPing, “Ln2MO4 cathode materials for solid oxide fuel cells”, Inorganic Solid State Chemistry and Energy Materials, 54 (2011) 898-910.
[11]J.D. Jorgensen, B. Debrowski, S. Pei, D.R. Richards, D.G. Hinks, “Structure of the interstitial oxygen defect in La2CuO4+δ”, Physical Review B, 40 (1989) 42187-2199
[12]J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J.C. Grenier, M. Marrony, “Perovskite and A2MO4-type oxides as new cathode materials for protonicsolid oxide fuel cells”, Electrochimica Acta, 55 (2010) 5847-5853
[13]E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.C. Grenier, “Oxygen transport properties of La2Ni1-xCuxO4+δ mixed conducting oxides”, Solid State Science, 5 (2003) 973-981
[14]A. A. Yaremchenko, V.V. Kharton, M.V. Patrakeev, J.R. Frade, “p-Type electronic conductivity oxygen permeability and stability of La2Ni0.9Co0.1O4+δ”, Journal of Mater Chemistry, 13 (2003) 1136-1144
[15]J.M. Bassat, P. Odier, J.P. Loup, “The semiconductor-to-metal transitionin question in La2-xNiO4+δ(δ> 0 or δ< 0)”, Journal of Solid State Chemistry, 110 (1994) 124-135
[16]K. Ishikawa, W. Shibata, K. Watanabe, T. Isonaga, M. Hashimoto, Y. Suzuki. Metal-semiconductor transition of La2-xNiO4+δ”, Journal of Solid State Chemistry, 131 (1997) 275-281
[17]V. Kharton, A.A. Yaremchenko, A.L. Shaula, M.V. Patrakeev, E.N. Naumovich, D.I. Logvinovich, J.R. Frade, F.M.B. Marques, “Transport properties and stability of Ni-containing mixed conductors with perovskite and K2NiF4-type structure ”,Journal of Solid State Chemistry, 177 (2004) 26-37
[18]Al. Daroukha M., V.V. Vashooka, H. Ullmanna, F. Tietzb, Arual Rajc I, “Oxides of the AMO3 and A2MO4-type: structural stability, electrical conductivity and thermal expansion”, Solid State Ionics, 158 (2003) 141-150
[19]K. Ishikawa, W. Shibata, K. Watanabe, T. Isonaga, M. Hashimoto, Y. Suzuki, “Metal-semiconductor transition of La2-xNiO4+δ”, Journal of Solid State Chemistry ,131 (1997) 275-281
[20]Q. Li, H. Zhao, L.H. Huo, L.P. Sun, X. L. Cheng, J.C. Grenier, “Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs”, Electrochemistry Communications, 9 (2007) 1508-1512
[21]J.B. Goodenough, A. Manthiram, “Crystal chemistry and superconductivity of the copper oxides”, Journal of Solid State Chemistry, 88 (1990) 115-139
[22]J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J.C. Grenier, M. Marrony, “Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells”, Electrochimi Acta, 55 (2010) 5847-5853
[23]L.P. Sun, Q. Li, H. Zhao, L.H. Huo, J.C. Grenier, “Preparation and electrochemical properties of Sr-doped Nd2NiO4 cathode materials for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources, 183 (2008) 43-48
[24]Q. Li, Y. Fan, H. Zhao, L.H. Huo, “Preparation and electrochemical properties of cathode materials La2-xSrxNiO4 for IT-SOFC. Chinese Journal of Inorganic Chemistry, 22 (2006) 2025-2030
[25]Q. Li, Y. Fan, H. Zhao, L.P. Sun, L.H. Huo, “Preparation and electrochemical properties of a Sm2-xSrxNiO4 cathode for an IT-SOFC. Journal of Power Sources, 167 (2007) 64-68
[26]H.W. Nie, T.L. Wen, S.R. Wang, Y.S. Wang, U. Guth, V. Vashook, “Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−αA′αMO4 (A = Pr, Sm; A′ = Sr; M = Mn, Ni; α = 0.3,0.6) as a new cathode for SOFC”, Solid State Ionics, 177 (2006) 1929-1932
[27]A.P. Khandale, S.S. Bhoga, “Combustion synthesized Nd2-xCexCuO4 (x=0~0.25) cathode materials for intermediate temperature solid oxide fuel cell applications”, Journal of Power Sources, 195 (2010) 7974-7982
[28]Q. Li, H. Zhao, L.H. Huo, L.P. Sun, X. L. Cheng, J.C. Grenier, “Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs”, Electrochemistry Communications, 9 (2007) 1508-1512
[29]Z. Murray, M. Liu, “Modelling of ambipolar transport properties of composite mixed ionic-electronic conductors”, Solid State Ionics, 93 (1997) 65-84
[30]Q. Li, Y. Fan, L.P. Sun, H. Zhao, L.H. Huo, S. Gao, J.C. Grenier, “Preparation and electrochemical properties of composite cathode La1.6Sr0.4NiO4-Ce0.9Gd0.1O1.9 cathode for an IT-SOFC,” Chinese Journal of Inorganic Chemistry, 23 (2007) 300-304
[31]J.D. Jorgensen, B. Dabrowski, D.G. Hinks, S. Pei, D.R. Richards, D.G. Hinks, “La2CuO4+δ and La2NiO4+δ: Phase separation resulting from excess oxygen defects”, Physica C : Superconductivity, 99-100 (1989) 162-164
[32]C. Chaillout, S.W. Cheong, Z. Fisk, M.S. Lehmnann, M. Marezio, B. Morosin, J.E. Schirber, Physica C : Superconductivity, (1989) 158-183
[33]C. Chaillout, J. Chenavas, S.W. Cheong, Z. Fisk, M. Marezio, B. Morosin, J.E. Schirber, Physica C: Superconductivity, (1990) 170 87
[34]P.G. Radaelli, J.D. Jorgensen, A.J. Schultz, B.A. Hunter, J.L. Wagner, F.G. Chou and D.C. Johnston, Physica, (1993) B48 499
[35]Z..Hua-Li, L. Wei, L. Dong-Cai, W. Xiu-Sheng, C. Chu-Sheng, “Phase separation in La2NiO4+δ studied by low-frequency internal friction technique”, Physica, 11 (2004) B53-3838
[36]J.M. Tranquada, Y. Kong, J.E. Lorenzo, D.J. Buttrey, D.E. Rice and V. Sachan, Phys. Rev, 50 (1944) B63-40
[37]W.Zhou, Z. Shao, R, Ran, H. Gu, W. Jin, N. Xu, “LSCF nanopowder from Cellulose-Glycine-Nitrate process and its application in intermediate-temperature solid-oxide fuel cells”, Journal of the American Ceramic Society, 91 (2008) 1155-1162
[38]J. Spooren, R. I. Walton, F. Millange, “A study of the manganites La0.5M0.5MnO3 (M=Ca, Sr, Ba) prepared by hydrothermal synthesis”, Journal of Materials Chemistry, 15 (2005) 1542-1551
[39]V.V. Kharton, A.A. Yaremchenko, E.V. Tsipis, A.A. Valente, M.V. Patrakeev, A.L. Shaula, J.R. Frade, J. Rocha, “Characterization of mixed-conducting La2Ni0.9Co0.1O4+δ membranes for dry methane oxidation”, Applied Catalysis A: General, 261 (2004) 25-35
[40]S. Wang, T. Kato, S. Nagata, T. Honda, T. Kaneko, N. Iwashita, M. Dokiya, “Performance of a La0.6Sr0.4Co0.8Fe0.2O3–Ce0.8Gd0.2O1.9-Ag cathode for ceria electrolyte SOFCs”, Solid State Ionics, 146 (2002) 203-210
[41]Q.L. Liu, K.A. Khor, S.H. Chan, “High-performance low-temperature solid oxide fuel cell with novel BSCF cathode”, Journal of Power Sources, 161 (2006) 123-128
[42]A. Subramania, T. Saradha, S. Muzhumathi, “Synthesis of nano-crystalline (Ba0.5Sr0.5)Co0.8Fe0.2O3-δ cathode material by a novel sol-gel thermolysis process for IT-SOFCs”, Journal of Power Sources, 165 (2007) 728-732
[43]余河潔,以鍶摻雜酮酸鑭做為中溫固態氧化物燃料電池陰極材料之研究,博士論文,國立成功大學材料科學及工程學系,(2005)(指導教授:方冠榮)。
[44]D. Perez-Coll, A. Aguadero, M.J. Escudero, L. Daza, “Effect of DC current polarization on the electrochemical behaviour of La2NiO4-δand La3Ni2O4-δ-based systems”, Journal of Power Sources, 192 (2009) 2-13
[45]J.B Goodenough, S. Ramaseshan, “Further evidence for the coexistence of localized and itinerant 3d electrons in La2NiO4”, Materials Research Bulletin, 17 (1982) 383-390


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊