跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳政
研究生(外文):Cheng Chen
論文名稱:多元元素鈦鐵礦之微波介電性質探討
論文名稱(外文):Microwave Dielectric Properties of Ilmenite Doped with Multi-Elements
指導教授:王錫福
指導教授(外文):Sea-Fue Wang
口試委員:段維新楊尚叡徐永富
口試委員(外文):Wei-Hsing TuanShang-Ruei YangYung-Fu Hsu
口試日期:2012-01-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:68
中文關鍵詞:MT多元元素鈦鐵礦微波介電陶瓷
外文關鍵詞:MTMulti-ElementsIlmeniteMicrowave ceramic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ABO3複合型鈦鐵礦材料具有優異的介電、壓電、熱電及光學性能,MgTiO3(在此簡稱MT)為鈦鐵礦結構晶體屬於六方晶系,擁有良好的介電常數、高品質因子與低共振頻率溫度係數其原料豐富且成本低廉,因此常被應用於微波材料上。過去的研究中,主要研究在於探討A-site結構的變化對其微波介電性質的影響。本研究提出依序增加Zr4+、Sn4+、Zn2+、Ni2+,以等莫耳添加的方式,嘗試置換部分A-site、B-site陽離子以達多元化之目的,並分別探討多元化成分的添加對於緻密化行為、晶體結構與微波特性的影響。
Mg0.90Zn0.05Ni0.05( Z0.05Sn0.05 Ti0.90)O3於1420℃/6 h可燒結緻密,密度4.05 g/cm3,微波性質εr =17、Qf =112,000 GHz、τf = - 41 ppm/℃。另一方面,在進行B-site置換後,更可進一步有效提升其微波介電性質,尤以Qf值最為顯著;相較於MgTiO3,不僅降低燒結溫度,微波應用上更能有效減少電磁能的散失。


MgTiO3 with ABO3 complex illmenite structure, possessing a high relative permittivity (εr), a high quality factor (Q), and a low temperature coefficient of resonator frequency (τf), has been widely studied for use in microwave dielectric devices. The past studies were focusing on the effects of A-site substitution on their microwave dielectric properties. In this study, dopants of multi-element including Zr4+, Sn4+, Zn2+, and Ni2+ in the MgTiO3 lattices were attempted to investigate the effects of multi-dopant on the densification, crystal structure, and microwave dielectric properties of the ceramics. It was found that Mg0.90Zn0.05Ni0.05(Zn0.05Sn0.05Ti0.90)O3 sintered at 1420℃ for 6 h appeared to record a sintered density of 4.05 g/cm3 and the microwave properties: εr = 17, Q × f = 112,000 GHz, τf = - 41ppm/℃. Comparing with MgTiO3, MgTiO3 with B site substitutions revealed a significantly improving in the microwave dielectric properties, particular for Q × f value.

摘 要 i
ABSTRACT ii
誌謝 iv
目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 研究目的 4
第二章 文獻回顧與理論基礎 5
2.1 文獻回顧 5
2.1.1 微波介電材料簡介 5
2.1.2 鈣鈦礦之結構 6
2.1.3 鈦鐵礦之結構 8
2.1.4 MgTiO3之結構及性質 9
2.1.5 結晶化學考量 11
2.2 置換作用 12
2.2.1 置換原理 12
2.2.2 容忍因子 13
2.3 微波介電原理及特性 15
2.3.1 介電原理 15
2.3.2 微波介電特性 17
2.3.3 微波介電性質量測 21
2.4 燒結理論 23
2.4.1 燒結反應驅動力 23
2.4.2 燒結過程相變化 24
第三章 實驗流程與量測 27
3.1 實驗原料 27
3.2 實驗流程 27
3.2.1 實驗配方 29
3.3 材料特性分析方法 29
3.3.1 燒結密度量測 29
3.3.2 X-Ray相鑑定(XRD) 30
3.3.3 微結構分析-掃描式電子顯微鏡(SEM) 30
3.4 材料微波介電特性量測 30
第四章 結果與討論 33
4.1 MgTiO3 33
4.1.1 相組成分析 33
4.1.2 燒結緻密行為 34
4.1.3 微結構分析 34
4.1.4 微波介電性質 37
4.2 Mg(Zr0.05Ti0.95)O3 38
4.2.1 相組成分析 38
4.2.2 燒結緻密行為 39
4.2.3 微結構分析 40
4.2.4 微波介電性質 43
4.3 Mg(Zr0.05Sn0.05Ti0.90)O3 45
4.3.1 相組成分析 45
4.3.2 燒結緻密行為 46
4.3.3 微結構分析 47
4.3.4 微波介電性質 50
4.4 Mg0.95Zn0.05(Zr0.05Sn0.05Ti0.95)O3 52
4.4.1 相組成分析 52
4.4.2 燒結緻密行為 53
4.4.3 微結構分析 54
4.4.4 微波介電性質 56
4.5 Mg0.90Zn0.05Ni0.05(Zr0.05Sn0.05Ti0.90)O3 58
4.5.1 相組成分析 58
4.5.2 燒結緻密行為 59
4.5.3 微結構分析 60
4.5.4 微波介電性質 62
第五章 結論 64
參考文獻 65


[1]O. E. Rase, R. Roy, “Phase equilibria in the system BaO‧TiO2”, Am. Ceram. Soc., vol. 38, 1955, pp. 102-113.
[2]D. H. Templeton, C. H. Dauben, “Polarized octahedra in Barium Tetratitanate”, Journal of Chemical Physics, vol. 32, 1960, pp. 1515-1518.
[3]D. J. Masse, R. A. Pucel, D. W. Readey et a1.,A New Low Loss, “High k, temperature-compensating dielectric for microwave applications”, Proc. IEEE,vol. 59, 1971, pp. 1628-1629.
[4]G. H. Jonker, W. Kwestroo, “The ternary system BaO-TiO2-SnO2 and BaO-TiO2-ZrO2”, J Am Ceram. Soc., vol.41, 1958, pp. 390-394.
[5]J. K. Plourde, D. F. Linn, H. M O Bryan, J. Thomson, “Ba2Ti9O20 as a microwave dielectric resonator”, J Am Cream. Soc., vol. 58, 1975, pp. 418-420.
[6]J. K. Plourde, C. L. Ren, “Application of dielectric resonators in microwave components”, IEEE. Trans. Microwave Theory Tech., vol. 29, 1981, pp.754-770.
[7]F. Y. Yoneda, T. Okabe, K. Sakaue, H. Terauchi, H. Kasatani, K. Deguchi, “Structural characterization of BaTiO3 thin films grown by molecular beam epitaxy”, J. Appl. Phys.,vol. 83, 1998, pp. 2458-2461.
[8]O’Bryan Jr., H.M., Thomson, J., Plourde, J.K., “Effects of chemical treatment on loss quality of microwave dielectric ceramics”, Ber Dtsch Keram Ges, vol. 55, 1978, pp. 348-351.
[9]C. H. T. Kim, S. Nahm, J. D. Byun, “Low-fired (Zn, Mg) TiO3 microwave dielectrics”, J. Am. Ceram. Soc., vol. 82, 1999, pp. 3476–3480.
[10]R. D. Richtmyer, “Dielectric Resonator,” J. Appl. Phys., vol. 10, 1939, pp.391-398.
[11]S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonator”, IEEE Trans, vol. 16, 1968, pp.217-218.
[12] K. Wakino, Ferroelectrics, Nagaokakyo-shi, Kyoto, 617, Japan: Murata Manufactruing Co., Ltd., 1989, pp. 69-86.
[13] J. G. Baek, T. Isobe, M. Senna, Solid State Ionics , 1996, pp.269-279.
[14] Won-Woo Cho, Ken-ichi Kakimoto, H. Ohsato, Jpn. J. Appl. Phys. Vol. 43.
2004, pp.6221-6224.
[15]D. K. Cheng, Field and Wave Electromagnetics2/e,califora, Addison-wisely, 2000, pp.62-65
[16]A. J. Moulson and J. M. Herbert, Electroceramics, New York: John wiley & sons Ltd, 1990, pp.24-52
[17]A. S. Bhalla, Ruyan Guo, and Rustum Roy, “The Perovskite Structure–a Review of its Role in Ceramic Science and Technology”, 2000, vol. 4, pp.3–26,.
[18]Hendrik J. Monkhorst, James D. Pack“Special points for Brillouin-zone integrations Physical Revie1976”, pp. 5188-5192.
[19]Ruslan P. Liferovich Roger H Mitchell, “Geikielite–ecandrewsite solid solutions: synthesis and crystal structures of the Mg1−xZnxTiO3 (0 ≤x≤ 0.8) series Acta Crystallographica ”, vol.60, pp.496-501.
[20]Hou Min, Ji Zifang, Wang Lihong, You Jinglin, Wang Yuanyuan, Zheng Shaobo, Simon Patrick “Temperature dependent Raman spectra and micro-structure study of hexagonal MgTiO3 crystal”, 2007 Materials Letters,vol 61, pp.4329.
[21]Jong-Gab Baek, Tetsuhiko Isobe, “Mechanochemical effects on the precursor formation and microwave dielectric characteristics of MgTiO3”, Mamoru Senna Solid State Ionics ,1996, pp.269-279
[22]G. Parthasarathy,”High-temperature electrical resistivity and heat capacity studies on nano-crystalline geikielite”, Materials Letters, vol. 61, 2007, pp.3208-3210.
[23]G. Parthasarathy, S. V. Manorama, “A novel method for synthesizing nano-crystalline MgTiO3 geikielite”, Indian Academy of Sciences, vol. 30, 2006 pp.19-21.
[24]Zhu C G, Chen Y H, Chu D B, “Preparation of Nano-sized MgTiO3 Powder by Electrochemistry in Organic Solution”,Chinese Journal of Inorganic Chemistry 2005, vol. 21, pp. 919.
[25]T. Hirata, K. Ishioka, M. Kitajima“,An infrared investigation of the otavite-magnesite solid solution ”, Journal of Solid State Chemistry American Mineralogist, vol. 92, 2007, pp. 837-843..
[26]Eung Soo Kim, Chang Jun Jeon”, Crystal structure and microwave dielectric properties of ATiO3, ATa2O6, AWO4 (A = Ni, Mg, Co) ceramics “, Journal of the European Ceramic Society vol. 30, 2010, pp. 341-346.
[27]R. Freer, F. Azough, “Journal of the European Ceramic Society”, vol. 28, 2008, pp. 1433-1441.
[28]Qi Jian-Quan, Li Wen, Wang Yong-Li, Gui Zhi-Lun, Li Long-Tu “,Ba1-xCdxTiO3 Based Temperature-stable Dielectrics Sintered at Medium-low Temperature” 2002, vo1. 17, pp. 1199-1202.
[29]E. A. V. Ferri, J. C. Sczancoski, L. S. Cavalcante, E. C. Paris, J. W. M. Espinosa, A. T. de Figueiredo, P. S. Pizani, V. R. Mastelaro, J. A. Varelab, “Photoluminescence behavior in MgTiO3 powders with vacancy/distorted clusters and octahedral tilting”, Materials Chemistry and Physics, vol. 117 , 2009, pp. 192-198.
[30]J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, H. J. Kim, Jpn. J. Appl. Phys., vol. 33, 1994, pp. 5466-5470.
[31]W.D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to ceramics, New York: John Wiley and Sons, 1976, pp.210..
[32]C. G. Bergeron, S. H. Risbud, Introduction to phase equilibria in ceramics, Columbus, Ohio: The Am. Ceram. Soc. Inc., 1984, pp. 117.
[33]W. H. Lee, W. A. Groen, D. Hennings, “Dysprosium doped dielectric materials for sintering in reducing atmospheres”, J. Electronceram., vol. 5, 2000, pp. 31-36.
[34]O. Muller, R. Roy, The Major Ternary Structural Families, New York, Springer-Verlag, 1974, pp. 411-448..
[35]D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A, vol. 32(A), 1976, pp. 751-767.
[36]Arthur von Hippel, Dielectric and waves, New York: Wiley, 1957, pp. 4-7.
[37]H. Ocuchi, S. Kawashima, “Dielectric ceramics for microwave application”, Jpn. J. Appl. Phys., vol. 24, 1985, pp. 60-64.
[38]吳明忠,鋅鈮系無線通訊用低溫燒結微波介電材料之研究,碩士論文,國立台灣大學材料科學與工程學研究所,台北,2004.
[39]B.W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range”, IEEE. Trans. MTT, vol. 8, 1960, pp. 402-410.
[40]W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators”, IEEE. Trans. Microwave Theory Tegh., vol. 18, 1970, pp. 476-485.
[41]Y. K. kobayashi, and M. Katoh, “Microwave measurement of dielectric Properites of low-loss materials by the dielectric rod resonator method”, IEEE Trans., vol. 33, 1985, pp. 586-592.
[42]汪建民,陶瓷技術手冊(上),台北,全華科技圖書股份有限公司,1992,第98-103頁。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top