跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/30 09:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊明
研究生(外文):Chun-Ming Chen
論文名稱:微量Pd對Fe-Si-B非晶合金之玻璃形成能力及軟磁性質研究
論文名稱(外文):Glass forming ability and soft magnetic properties of Palladium added Fe-Si-B amorphous alloy
指導教授:陳適範陳適範引用關係林於隆
口試委員:林新亮王錫九薄慧雲
口試日期:2012-07-03
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:薄帶非晶質軟磁
外文關鍵詞:ribbonamorphoussoft magnetic
相關次數:
  • 被引用被引用:4
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
本研究藉由添加微量的鈀(Pd)來探究其對Fe-Si-B非晶合晶之玻璃形成能力及軟磁性質之影響。(Fe75Si10B15)100-xPdx (x = 0,0.5,1,2 at%)母合金的之製備在真空電弧熔煉爐在氬氣氛下進行,接著以單輥熔射旋淬法製備出薄帶。
結果顯示: (Fe75Si10B15)100-xPdx合金薄帶經以XRD及SEM分析與觀察,0 at%Pd及0.5 at%Pd之薄帶產生些微結晶之現象。當Pd添加在1 at%與2 at%Pd的薄帶皆呈現非晶質結構。 從DSC熱分析當Fe-Si-B非晶合金添加Pd後具有Tg的特徵溫度,而以添加1 at%Pd具有最佳之GFA(glass forming ability),所得Tg為767.8K與Tx為841.3 K。最後,藉由Kissinger plot 獲得1 at%Pd具有最高之晶化能達447.95 kJ/mol,意旨有高的熱穩定性。磁性的量測顯示,1 at%Pd與2 at%Pd之Ms分別為1.28、1.30 T,而Hc則為33.0、30.8 A/m。而Fe-Si-B非晶質薄帶具有最高Ms為1.52 T,但Fe-Si-B非晶質基底具微晶的存在,以至於Hc偏高為49 A/m。接著,將1 at%Pd經由不同溫度應力消除退火處理,而磁性質獲得最佳改善為退火溫度650K,Ms從1.28 T提升為1.34 T,而Hc從33.0 A/m下降至14 A/m。顯示進行消除應力熱處理確實減少晶格應變的內應力與急冷所引起的殘留應力,因此退火熱處理改善添加Pd元素造成磁性的損失。


The effect of minor Pd addition on glass forming ability and soft magnetic properties of Fe-Si-B metallic glass were investigated. The (Fe75Si10B15)100-xPdx (x = 0,0.5,1,2 at%) ingots via vacuum-arc-melting under argon atmosphere. A single roller melt-spinning method was employed to produce the alloy ribbons.
Structural results show that:(Fe75Si10B15)100-xPdx amorphous alloy ribbons, 0 at%Pd and 1 at%Pd ribbons have a tendency to slightly crystalline by XRD analysis and SEM observation. When Pd addition of 1% and 2% alloy belong to the amorphous structure. DSC thermal analysis shows that Fe-Si-B amorphous alloy add Pd has a Tg of characteristic temperature. And when the addition of 1at% with the best GFA (glass forming ability), the results for the Tg is 767.8 K and Tx is 841.3K. Finally, Kissinger plot method to obtain 1 at% has the highest activation energy of crystallization reach 447.95 kJ/mol, that show it has high thermal stability. The magnetic measurements show the value of Ms is 1.28 T, 1.30 T,and the value of Hc is 33.0, 30.8 A/m for 1 at%, 2 at%. The Fe-Si-B amorphous ribbons with the highest Ms 1.52 T. The Fe-Si-B The alloy has the exist of microcrystals in the amorphous base, so that the value of Hc is as high as 49 A / m. Then, 1 at% alloy ribbons annealed at different temperatures for 10 minutes. The magnetic properties of the best improvements for the annealing temperature of 650K, Ms upgrade from 1.28 T to 1.34 T, Hc from 33.0 A/m down to 14.0 A/m. Therefore, The stress-relief annealed treatments really reduce the residual stress caused by the internal stress of the lattice strain and quench. Therefore, the annealing heat treatment to improve the magnetic losses caused by the addition of the Pd.


目 錄

摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vii
圖 目 錄 viii
第一章 前言 1
1.1 非晶質軟磁性合金 1
1.2 研究動機 2
第二章 文獻回顧與理論基礎 4
2.1 金屬玻璃合金形成條件 4
2.1.1 實驗歸納法則-A.Inoue之三項經驗法則 4
2.1.2相關理論-非晶態合金結構 5
2.1.3 熱力學觀點[] 8
2.2 非晶質合金之熱力學特性 9
2.2.1 玻璃轉化溫度 9
2.2.2 居禮溫度(Curie temperature) 12
2.3 璃形成能力及熱穩定性之參數 13
2.3.1 簡約玻璃轉變溫度 Trg =Tg/Tl 13
2.3.2 過冷液態溫度溫度區ΔTx=Tx-Tg 14
2.3.3 γ參數γ=Tx/ (Tg+Tl ) 15
2.4 非晶結構判定 21
2.5 熱分析動力學 23
2.6 磁性理論 26
2.6.1磁性分類 26
2.6.2 磁異向性 (Magnetic anisotropy) 31
2.6.3非晶軟磁特性 33
第三章 實驗流程與方法 35
3.1 實驗流程 35
3.2 合金薄帶之製備 36
3.2.1 合金成份配製 36
3.2.2 合金熔煉 36
3.2.3 合金薄帶製程 37
3.2.4 合金薄帶熱處理 38
3.3 材料分析 39
3.3.1 X光繞射儀 39
3.3.2 同步熱分析儀 40
3.3.3 掃描式電子顯微鏡(SEM)與能量分散質譜儀(EDS) 41
3.3.4 振動樣品磁力儀 42
3.3.5 熱重分析計 44
第四章 結果與討論 45
4.1 試片外觀之觀察 45
4.1.1 母合金鑄錠外觀 45
4.1.2 合金薄帶外觀 46
4.2 Pd的添加對於Fe-Si-B合金之結構與成份分析 46
4.2.1 母合金鑄錠XRD分析 46
4.2.2 合金薄帶XRD分析 49
4.2.3 合金薄帶SEM觀察 50
4.3 Pd的添加對於Fe-Si-B玻璃形成能力之影響 52
4.3.1 Fe-Si-B-Pd合金之熱性質分析 52
4.3.2一般之非恆溫分析法-Kissinger plot 55
4.4 Pd的添加對於Fe-Si-B之磁性質影響 58
4.4.1 Fe-Si-B-Pd合金之磁滯曲線量測 58
4.4.2 Fe-Si-B-Pd合金之居禮溫度量測 62
4.5 Fe-Si-B-Pd應力退火之軟磁性質影響 63
4.5.1 應力退火薄帶XRD分析 63
4.5.2 應力退火薄帶VSM分析 64
第五章 結論 68
第六章 未來工作與建議 69
參考文獻 70



參考文獻
[1] W. Klement, R. H. Wilens and P. Duwez, "Non-crystalline Structure in solidified Gold-Silicon alloys," Nature, vol.187, 1960, pp.869-870.
[2] A. Inoue, T. Zhang and T. Masumoto, "Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled region," Mater. Trans. JIM, vol. 30 1989, pp.965.
[3] A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys," Acta Mater., vol.48, 2000, pp. 279-306.
[4] H.S. Ko, J.Y. Chang, "Effect of short-range order in liquid on the glass forming ability of Fe–Si–B alloy wires," Mater. Lett., vol.58, 2004, pp.2014.
[5] Y. Yoshizawa, S. Oguma, K. Yamauchi, "New Fe‐based soft magnetic alloys composed of ultrafine grain structure," J. Appl. Phys. 1988, vol.64, pp.6044-6046.
[6] Y. Yoshizawa, K. Yamauchi, "Fe-based soft magnetic alloys composed of ultrafine grain structure," Mater. Trans. JIM, vol.31, pp307-314.
[7] M. Hagiwara, A.Inoue and T.Masumoto, "Mechanical properties of Fe-Si-B amorphous wires produced by in-rotating-water spinning method," Metal. Mater. Trans., vol.13, 1982, pp. 373.
[8] A. Inoue, B.L. Shen, "New Fe-based bulk glassy alloys with high saturated magnetic flux density of 1.4-1.5 T," Mater. Sci. Eng. A, vol.375-377, 2004, pp302-306.
[9] A. Inoue, R.E. Park, R.E., "Soft Magnetic Properties and Wide Supercooled Liquid Region of Fe-P-B-Si Base Amorphous Alloys," Mater. Trans. JIM, vol.37, 1996, pp.1715-1721.
[10] T. Mizushima, K. Ikarashi, A. Makino, A. Inoue, "Structure and magnetic properties of bulky Fe-Al-Ga-P-C-B-Si glassy alloys in a ringed form prepared by Cu mold casting," IEEE Trans. Magn., vol.35, 1999, pp. 3361-3363.
[11] H. Koshiba, A. Inoue, A. Makino, "Fe-based soft magnetic amorphous alloys with a wide supercooled liquid region," J. Appl. Phys., vol.85, 1999, pp.5136-5138.
[12] M. Zhang, F. Kong, A. Wang, C. Chang, B. Shen, "Soft magnetic properties of bulk Fe-Co-Mo-P-C-B-Si glassy core prepared by copper mold casting," J. Appl. Phys., vol.111(10), 2012.
[13] A. Makino, A. Inoue, T. Mizushima, "Soft Magnetic Properties of Fe-Based Bulk Amorphous Alloys," Mater. Trans. JIM, vol.41, 2000, pp.1471-1477.
[14] A. Makino, T. Bitoh, A. Inoue, A.L. Greer, "Soft Magnetic Bulk Glassy Alloy Synthesized by Flux Melting and Water Quenching," Mater. Sci. Forum, vol.539-543, 2007, pp.1921-1925.
[15] D.B. Miracle, " A structural model for metallic glasses," Nature Mater., vol.3, 2004, pp. 697-698.
[16] A. Takeuchi, A. Inoue, "Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element," Mater. Trans., vol. 46, 2005, pp. 2817-2829.
[17] A. Inoue, A. Takeuchi and T. Zhang, "Ferromagnetic bulk amorphous alloys," Metal. Mater. Trans., vol.29, 1998, pp.1779-1793.
[18] A. Inoue, "A.High-strength bulk amorphous-alloys with low critical cooling rates," Mater. Trans. JIM, vol.36, 1995, pp.866-875.
[19] D.B. Miracle, "A structural model for metallic glasses," Nature Mater., vol.3, 2004, pp.697-702.
[20] D.B. Miracle, "The efficient cluster packing model–An atomic structural model for metallic glasses," Acta Mate. ,vol.54, 2006, pp.4317-4336.
[21] D.B. Miracle, W.S. Sandersa, O. N. Senkovb, "The influence of efficient atomic packing on the constitution of metallic glasses," Philos. Mag. A, vol.83, 2003, pp.2417.
[22] S. R. Elliot, Physics of Amorphous Materials, New York ,J. Wiley,1990.
[23] Z.P. Lu, C.T. Liu, "A new approach to understanding and measuring glass formation in bulk amorphous materials," Intermetallics , vol.12, 2004, pp.1035.
[24] Li Liu, Xiangjin Zhao, Chaoli Ma, Tao Zhang, "Kinetics of crystallization process for Pd-based bulk metallic glasses," Intermetallics, vol.17, 2009, pp.242.
[25] W.D. Callister, Materials science and engineering an introduction, 6th edition, Wiley India Pvt Ltd, 2005.
[26] Hernando A, Kulik T, "Exchange interactions through amorphous paramagnetic layers in ferromagnetic nanocrystals," Phys Rev B,vol.49,1994, pp7064-7067.
[27] Hernando A, "Iron exchange-field penetration into the amorphous interphase of nanocrystalline materials," Phys. Rev. B, vol.51,1995, pp.3281.
[28] Turnbull D, "Under what condition can a glass be formed?," Contemp. Phys., 1969, vol.10(5), pp.473-488.
[29] A Inoue, T Zhang, T Masumoto, "Glass-forming ability of alloys," J Non-cryst Solids, 1993, vol.156-158, pp.473-480.
[30] Lu Z P, Liu C T, "A new glass-forming ability criterion for bulk metallic glasses," Acta Mater., 2002, vol.50(13), pp.3501-3512.
[31] Xiao X S, Fang S S, Wang G M, Hua Q, Dong Y D, "Influence of beryllium on thermal stability and glass-forming ability of Zr-Al-Ni-Cu bulk amorphous alloys," J. Alloys Compd., 2004, vol.376(1/2), pp.145-148.
[32] Mondal K, B.S. Murty, "On the parameters to assess the glass forming ability of liquids," J Non-cryst Solids, 2005, vol.351(16/17), pp.1366-1371.
[33] Chen Qing-jun, Shen Jun, Fan Hong-bo, Sun Jian-fei, Huang Yong-jiang, Mccartney D G, "Glass-forming ability of an iron-based alloy enhanced by Co addition and evaluated by a new criterion," Chinese Physics Letters, 2005, vol.22(7), pp.1736-1738.
[34] Yuan Z Z, Bao S L, Lu Y, Zhang D P, Yao L, "A new criterion for evaluating the glass-forming ability of bulk glass forming alloys," J.Non-Cryst.Solids, 2008,vol.459 (1/2), pp.251-260.
[35] Fan G J, Choo H, Liaw P K, "A new criterion for the glass-forming ability of liquids," J. Non-Cryst. Solids, 2007, vol.353(1), pp.102-107.
[36] Lu Z P, Liu C T, Wu Y, Tan H, Li Y, Chen G L, "Composition effects on glass forming ability and its indicatorγ," Intermetallics, 2008, vol.16(3), pp.410-417.
[37] D. Turbull, J. C. Fisher, "Rate of Nucleation in Condensed Systems," J. Chem. Phys., vol.17, 1949, pp.71-73.
[38] Z. P. Lu, H. Tan, Y. Li and S. C. Ng, "The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses," Scripta Mater., vol.42, 2000, pp.667-673.
[39] T.A. Waniuk, J. Schroers, and W.L. Johnson, "Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys," Applied Physics Letters, vol.78, 2001, pp. 1213.
[40] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, "High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems," Acta Mater., vol.49, 2001, pp.2645.
[41] Weinberg MC, "Glass-forming ability and glass stability in simple systems," J. Non-Cryst. Solids, vol.194, 1994, pp.81.
[42] Z.P. Lu and C.T. Liu, "A new glass-forming ability criterion for bulk metallic glasses," Acta Mater., vol.50, 2002, pp.3505.
[43] Z.P. Lu and C.T. Liu, "A new glass-forming ability criterion for bulk metallic glasses," Acta Mater., vol.50, 2002, pp. 3508-3509.
[44] William D. Callister, David G. Rethwisch, Materials Science and Engineering: An Introduction, 7th Edition, New York: Wiley, 2007, pp.67-70.
[45] P. Kwapuli′nski, J. Rasek, Z. Stokłosa, G. Haneczok, "Magnetic properties of amorphous and nanocrystalline alloys based on iron," J. Mater. Process. Technol., Vol..157-158, pp.739.
[46] F.X. Qin, X.M. Wang, A. Inoue, "Effect of annealing on microstructure and mechanical property of a TieZreCuePd bulk metallic glass," Intermetallics, vol.15, 2007, pp.1339.
[47] P. Altlizar, R. Valenzuela , "Avrami and Kissinger theories for crystallization of metallic amorphous alloys," Mater. Lett., vol.11, 1991, pp.101-104.
[48] W. A. Johnson, K. F. Mehl, "phase transformation theory and research," Trans. Am. Inst. Mining Met. Eng., vol.135,1981, pp.315.
[49] Melvin Avrami, "Kinetics of Phase Change. I General Theory," Phys., vol.7, 1939, pp.1103-1112.
[50] Melvin Avrami, "Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei," Phys.,vol.8, 1940, pp.212-224.
[51] Melvin Avrami, "Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III", Phys.,vol.9, 1941, pp.177-184.
[52] D. W. Henderson, "Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids," J. Non-Cryst. Solids, vol.30, 1979, pp. 301-315.
[53] J. Vazquez, R. A. Ligero, P. Villares , R. Jimenez-Garay, "On the crystallization kinetics of glassy alloys in the Cu-As-Se system," Thermochim. Acta, vol.157, 1990, pp.181
[54] H. Yinnon, D.R. Uhlmann, "Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids part I: Theory", J. Non-Cryst. Solids, vol.54 ,1983, pp.253.
[55] D. R. Askel, P. P. Phulé, The Science and Engineering of Materials, 5th edition, CENGAGE Learning, 2006, pp.768.
[56] D.C. Jiles, "Recent advances and future directions in magnetic materials", Acta Mater., vol.51, 2003, pp.5907.
[57] 張煦、李學養譯,磁性物理學,台北:聯經出版事業公司,1981,第143頁。
[58] B. D. Cullity, C. D. Graham, Introduction to Magnetic Materials, 2th edition, Wiley- IEEE Press, 2008, pp.197-238.
[59] G. Herzer, "Nanocrystalline soft magnetic alloy," Handbook of Magnetic Material, vol.10(3), 1997, pp.435-439.
[60] 高汝偉、馮維存、王標、陳偉、韓廣兵、張鵬、劉漢強、李衛、郭永權、李岫梅, "納米複合永磁材料的有效各向異性與矯頑力", 物理學報, vol.52, 2003, pp.703-706.
[61] 周壽增、董清飛, 超強永磁體-稀土鐵性永磁材料,第二版,中國:冶金工業出版社,第39頁。
[62] D.C. Jiles, "Recent advances and future directions in magnetic materials", Acta Mater., .vol.51, 2003, pp.5911.
[63] D.B. Miracle, "The efficient cluster packing model-An atomic structural model for metallic glasses," Acta Mate. ,vol.54, 2006, pp.4319-4321.
[64] D.B. Miracle, "A structural model for metallic glasses," Nature Mater., vol.3, 2004, pp. 698.
[65] S. Ahmadi, H.R. Shahverdi, S.S. Saremi, "Effects of Nb alloying on nano- crystallization kinetics of Fe55−xCr18Mo7B16C4Nbx (x=0, 3) bulk amorphous alloys," J. Mater. Sci. Technol., vol.27, 2011, pp.737.
[66] L.H. Kong, Y.L. Gao, T.T. Song, G. Wang, Q.J. Zhai, "Non-isothermal crystallization kinetics of FeZrB amorphous alloy," Thermochim. Acta, 2011, vol.522, pp.168.
[67] Emília Illeková ,I. Mat’ko, P. Svec Sr., P. Švec, D. Janičkovič, "The crystallization behavior of amorphous Fe-Sn-B ribbons," J. Alloys Compd., vol.509, pp.47.
[68] C.Y. Lin, T.S. Chin, "Soft magnetic (Fe, M)–Y–B (M =Co or Ni) bulk metallic glasses," J. Alloys Compd., vol.437, 2007, pp.195.
[69] Z. Longa, Y. Shaoc, F. Xu, H.Wei , Z. Zhang, P. Zhanga, X. Sub, "Y effects on magnetic and mechanical properties of Fe-based Fe–Nb–Hf–Y–B bulk glassy alloys with high glass-forming ability," Mater. Sci. Eng.B, 2009, pp.3.
[70] H.X. Li, Z.B. Jiao, J.E. Gao, Z.P. Lu, "Synthesis of bulk glassy Fe-C-Si-B-P-Ga alloys with high glass-forming ability and good soft-magnetic properties," Intermetallics, vol.18, 2010, pp.1824.
[71] A. Inoue, M. Koshiba, T. Itoi and A. Makino, "Ferromagnetic Co-Fe-Zr-B amorphous alloys with glass transition and good high-frequency permeability," Appl. Phys. Lett., vol. 73, 1998, pp. 744.
[72] Z.L. Long, Y. Shao, X.H. Deng, Y. Jiang, P. Zhang, B.L. Shen and A. Inoue, "Cr effects on magnetic and corrosion properties of Fe-Co-Si-B-Nb-Cr bulk glassy alloys with high glass-forming ability," Intermetallics, vol.15, 2007, pp. 1453.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊